| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelvv.1 | ⊢ 𝐴 ∈ V |
| opelvv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelxpi 5651 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: relopabiALT 5762 funsneqopb 7085 isof1oopb 7259 1st2ndb 7961 eqop2 7964 evlfcl 18128 brtxp 35922 brpprod 35927 brsset 35931 brcart 35974 brcup 35981 brcap 35982 elcnvlem 43693 swapfelvv 49363 fucoelvv 49420 prcofelvv 49480 |
| Copyright terms: Public domain | W3C validator |