![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelvv.1 | ⊢ 𝐴 ∈ V |
opelvv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelxpi 5712 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 〈cop 4633 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-xp 5681 |
This theorem is referenced by: relopabiALT 5821 funsneqopb 7146 isof1oopb 7318 1st2ndb 8011 eqop2 8014 evlfcl 18171 brtxp 34840 brpprod 34845 brsset 34849 brcart 34892 brcup 34899 brcap 34900 elcnvlem 42337 |
Copyright terms: Public domain | W3C validator |