| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelvv.1 | ⊢ 𝐴 ∈ V |
| opelvv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelxpi 5656 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 〈cop 4583 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: relopabiALT 5766 funsneqopb 7086 isof1oopb 7262 1st2ndb 7964 eqop2 7967 evlfcl 18128 brtxp 35864 brpprod 35869 brsset 35873 brcart 35916 brcup 35923 brcap 35924 elcnvlem 43584 swapfelvv 49258 fucoelvv 49315 prcofelvv 49375 |
| Copyright terms: Public domain | W3C validator |