MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelvv Structured version   Visualization version   GIF version

Theorem opelvv 5678
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1 𝐴 ∈ V
opelvv.2 𝐵 ∈ V
Assertion
Ref Expression
opelvv 𝐴, 𝐵⟩ ∈ (V × V)

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2 𝐴 ∈ V
2 opelvv.2 . 2 𝐵 ∈ V
3 opelxpi 5675 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3mp2an 692 1 𝐴, 𝐵⟩ ∈ (V × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644
This theorem is referenced by:  relopabiALT  5786  funsneqopb  7124  isof1oopb  7300  1st2ndb  8008  eqop2  8011  evlfcl  18183  brtxp  35868  brpprod  35873  brsset  35877  brcart  35920  brcup  35927  brcap  35928  elcnvlem  43590  swapfelvv  49252  fucoelvv  49309  prcofelvv  49369
  Copyright terms: Public domain W3C validator