![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelvv.1 | ⊢ 𝐴 ∈ V |
opelvv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelxpi 5445 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | mp2an 679 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 Vcvv 3415 〈cop 4448 × cxp 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-opab 4993 df-xp 5414 |
This theorem is referenced by: relopabiALT 5546 funsneqopb 6739 isof1oopb 6903 1st2ndb 7543 eqop2 7546 evlfcl 17333 brtxp 32862 brpprod 32867 brsset 32871 brcart 32914 brcup 32921 brcap 32922 elcnvlem 39323 |
Copyright terms: Public domain | W3C validator |