Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelvv.1 | ⊢ 𝐴 ∈ V |
opelvv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelxpi 5626 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 |
This theorem is referenced by: relopabiALT 5733 funsneqopb 7024 isof1oopb 7196 1st2ndb 7871 eqop2 7874 evlfcl 17940 brtxp 34182 brpprod 34187 brsset 34191 brcart 34234 brcup 34241 brcap 34242 elcnvlem 41209 |
Copyright terms: Public domain | W3C validator |