MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelvv Structured version   Visualization version   GIF version

Theorem opelvv 5628
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1 𝐴 ∈ V
opelvv.2 𝐵 ∈ V
Assertion
Ref Expression
opelvv 𝐴, 𝐵⟩ ∈ (V × V)

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2 𝐴 ∈ V
2 opelvv.2 . 2 𝐵 ∈ V
3 opelxpi 5626 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3mp2an 689 1 𝐴, 𝐵⟩ ∈ (V × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595
This theorem is referenced by:  relopabiALT  5733  funsneqopb  7024  isof1oopb  7196  1st2ndb  7871  eqop2  7874  evlfcl  17940  brtxp  34182  brpprod  34187  brsset  34191  brcart  34234  brcup  34241  brcap  34242  elcnvlem  41209
  Copyright terms: Public domain W3C validator