| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelvv.1 | ⊢ 𝐴 ∈ V |
| opelvv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelxpi 5696 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 〈cop 4612 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: relopabiALT 5807 funsneqopb 7147 isof1oopb 7323 1st2ndb 8033 eqop2 8036 evlfcl 18239 brtxp 35903 brpprod 35908 brsset 35912 brcart 35955 brcup 35962 brcap 35963 elcnvlem 43592 swapfelvv 49147 fucoelvv 49198 prcofelvv 49257 |
| Copyright terms: Public domain | W3C validator |