| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelvv.1 | ⊢ 𝐴 ∈ V |
| opelvv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelvv | ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelxpi 5668 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 〈cop 4591 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: relopabiALT 5777 funsneqopb 7106 isof1oopb 7282 1st2ndb 7987 eqop2 7990 evlfcl 18163 brtxp 35861 brpprod 35866 brsset 35870 brcart 35913 brcup 35920 brcap 35921 elcnvlem 43583 swapfelvv 49245 fucoelvv 49302 prcofelvv 49362 |
| Copyright terms: Public domain | W3C validator |