![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelvv | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelvv.1 | ⊢ 𝐴 ∈ V |
opelvv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelvv | ⊢ ⟨𝐴, 𝐵⟩ ∈ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelvv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelxpi 5713 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ⟨𝐴, 𝐵⟩ ∈ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ⟨cop 4634 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 |
This theorem is referenced by: relopabiALT 5823 funsneqopb 7152 isof1oopb 7325 1st2ndb 8018 eqop2 8021 evlfcl 18180 brtxp 35157 brpprod 35162 brsset 35166 brcart 35209 brcup 35216 brcap 35217 elcnvlem 42655 |
Copyright terms: Public domain | W3C validator |