Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5904 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
2 | sseqin2 4149 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
3 | reseq2 5886 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: resabs1d 5922 resabs2 5923 resiima 5984 fun2ssres 6479 fssres2 6642 smores3 8184 setsres 16879 gsum2dlem2 19572 lindsss 21031 resthauslem 22514 ptcmpfi 22964 tsmsres 23295 ressxms 23681 nrginvrcn 23856 xrge0gsumle 23996 lebnumii 24129 dvmptresicc 25080 dfrelog 25721 relogf1o 25722 dvlog 25806 dvlog2 25808 efopnlem2 25812 wilthlem2 26218 gsumle 31350 rrhre 31971 iwrdsplit 32354 rpsqrtcn 32573 pthhashvtx 33089 cvmsss2 33236 nosupres 33910 nosupbnd2lem1 33918 noinfres 33925 noinfbnd2lem1 33933 nosupinfsep 33935 mbfposadd 35824 mzpcompact2lem 40573 eldioph2 40584 diophin 40594 diophrex 40597 2rexfrabdioph 40618 3rexfrabdioph 40619 4rexfrabdioph 40620 6rexfrabdioph 40621 7rexfrabdioph 40622 resabs1i 42694 fourierdlem46 43693 fourierdlem57 43704 fourierdlem111 43758 fouriersw 43772 psmeasurelem 44008 |
Copyright terms: Public domain | W3C validator |