MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1 Structured version   Visualization version   GIF version

Theorem resabs1 5961
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 5947 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 4176 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 5929 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 217 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4eqtrid 2776 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3904  wss 3905  cres 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-opab 5158  df-xp 5629  df-rel 5630  df-res 5635
This theorem is referenced by:  resabs1i  5962  resabs1d  5963  resabs2  5964  resiima  6031  fun2ssres  6531  fssres2  6696  smores3  8283  setsres  17107  gsum2dlem2  19868  gsumle  20042  lindsss  21749  resthauslem  23266  ptcmpfi  23716  tsmsres  24047  ressxms  24429  nrginvrcn  24596  xrge0gsumle  24738  lebnumii  24881  dvmptresicc  25833  dfrelog  26490  relogf1o  26491  dvlog  26576  dvlog2  26578  efopnlem2  26582  wilthlem2  26995  nosupres  27635  nosupbnd2lem1  27643  noinfres  27650  noinfbnd2lem1  27658  nosupinfsep  27660  rrhre  33990  iwrdsplit  34357  rpsqrtcn  34563  pthhashvtx  35103  cvmsss2  35249  mbfposadd  37649  mzpcompact2lem  42727  eldioph2  42738  diophin  42748  diophrex  42751  2rexfrabdioph  42772  3rexfrabdioph  42773  4rexfrabdioph  42774  6rexfrabdioph  42775  7rexfrabdioph  42776  fourierdlem46  46137  fourierdlem57  46148  fourierdlem111  46202  fouriersw  46216  psmeasurelem  46455
  Copyright terms: Public domain W3C validator