MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1 Structured version   Visualization version   GIF version

Theorem resabs1 5921
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 5904 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 4149 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 5886 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 216 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4eqtrid 2790 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3886  wss 3887  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  resabs1d  5922  resabs2  5923  resiima  5984  fun2ssres  6479  fssres2  6642  smores3  8184  setsres  16879  gsum2dlem2  19572  lindsss  21031  resthauslem  22514  ptcmpfi  22964  tsmsres  23295  ressxms  23681  nrginvrcn  23856  xrge0gsumle  23996  lebnumii  24129  dvmptresicc  25080  dfrelog  25721  relogf1o  25722  dvlog  25806  dvlog2  25808  efopnlem2  25812  wilthlem2  26218  gsumle  31350  rrhre  31971  iwrdsplit  32354  rpsqrtcn  32573  pthhashvtx  33089  cvmsss2  33236  nosupres  33910  nosupbnd2lem1  33918  noinfres  33925  noinfbnd2lem1  33933  nosupinfsep  33935  mbfposadd  35824  mzpcompact2lem  40573  eldioph2  40584  diophin  40594  diophrex  40597  2rexfrabdioph  40618  3rexfrabdioph  40619  4rexfrabdioph  40620  6rexfrabdioph  40621  7rexfrabdioph  40622  resabs1i  42694  fourierdlem46  43693  fourierdlem57  43704  fourierdlem111  43758  fouriersw  43772  psmeasurelem  44008
  Copyright terms: Public domain W3C validator