| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5936 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 2 | sseqin2 4168 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 3 | reseq2 5918 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 5 | 1, 4 | eqtrid 2778 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 ⊆ wss 3897 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-xp 5617 df-rel 5618 df-res 5623 |
| This theorem is referenced by: resabs1i 5951 resabs1d 5952 resabs2 5953 resiima 6020 fun2ssres 6521 fssres2 6686 smores3 8268 setsres 17084 gsum2dlem2 19878 gsumle 20052 lindsss 21756 resthauslem 23273 ptcmpfi 23723 tsmsres 24054 ressxms 24435 nrginvrcn 24602 xrge0gsumle 24744 lebnumii 24887 dvmptresicc 25839 dfrelog 26496 relogf1o 26497 dvlog 26582 dvlog2 26584 efopnlem2 26588 wilthlem2 27001 nosupres 27641 nosupbnd2lem1 27649 noinfres 27656 noinfbnd2lem1 27664 nosupinfsep 27666 rrhre 34026 iwrdsplit 34392 rpsqrtcn 34598 pthhashvtx 35164 cvmsss2 35310 mbfposadd 37707 mzpcompact2lem 42784 eldioph2 42795 diophin 42805 diophrex 42808 2rexfrabdioph 42829 3rexfrabdioph 42830 4rexfrabdioph 42831 6rexfrabdioph 42832 7rexfrabdioph 42833 fourierdlem46 46190 fourierdlem57 46201 fourierdlem111 46255 fouriersw 46269 psmeasurelem 46508 |
| Copyright terms: Public domain | W3C validator |