| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5948 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 2 | sseqin2 4172 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 3 | reseq2 5930 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 5 | 1, 4 | eqtrid 2780 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: resabs1i 5963 resabs1d 5964 resabs2 5965 resiima 6032 fun2ssres 6534 fssres2 6699 smores3 8282 setsres 17096 gsum2dlem2 19891 gsumle 20065 lindsss 21770 resthauslem 23298 ptcmpfi 23748 tsmsres 24079 ressxms 24460 nrginvrcn 24627 xrge0gsumle 24769 lebnumii 24912 dvmptresicc 25864 dfrelog 26521 relogf1o 26522 dvlog 26607 dvlog2 26609 efopnlem2 26613 wilthlem2 27026 nosupres 27666 nosupbnd2lem1 27674 noinfres 27681 noinfbnd2lem1 27689 nosupinfsep 27691 rrhre 34106 iwrdsplit 34472 rpsqrtcn 34678 pthhashvtx 35244 cvmsss2 35390 mbfposadd 37780 mzpcompact2lem 42908 eldioph2 42919 diophin 42929 diophrex 42932 2rexfrabdioph 42953 3rexfrabdioph 42954 4rexfrabdioph 42955 6rexfrabdioph 42956 7rexfrabdioph 42957 fourierdlem46 46312 fourierdlem57 46323 fourierdlem111 46377 fouriersw 46391 psmeasurelem 46630 |
| Copyright terms: Public domain | W3C validator |