| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5979 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 2 | sseqin2 4198 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 3 | reseq2 5961 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 5 | 1, 4 | eqtrid 2782 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3925 ⊆ wss 3926 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-rel 5661 df-res 5666 |
| This theorem is referenced by: resabs1i 5994 resabs1d 5995 resabs2 5996 resiima 6063 fun2ssres 6581 fssres2 6746 smores3 8367 setsres 17197 gsum2dlem2 19952 lindsss 21784 resthauslem 23301 ptcmpfi 23751 tsmsres 24082 ressxms 24464 nrginvrcn 24631 xrge0gsumle 24773 lebnumii 24916 dvmptresicc 25869 dfrelog 26526 relogf1o 26527 dvlog 26612 dvlog2 26614 efopnlem2 26618 wilthlem2 27031 nosupres 27671 nosupbnd2lem1 27679 noinfres 27686 noinfbnd2lem1 27694 nosupinfsep 27696 gsumle 33092 rrhre 34052 iwrdsplit 34419 rpsqrtcn 34625 pthhashvtx 35150 cvmsss2 35296 mbfposadd 37691 mzpcompact2lem 42774 eldioph2 42785 diophin 42795 diophrex 42798 2rexfrabdioph 42819 3rexfrabdioph 42820 4rexfrabdioph 42821 6rexfrabdioph 42822 7rexfrabdioph 42823 fourierdlem46 46181 fourierdlem57 46192 fourierdlem111 46246 fouriersw 46260 psmeasurelem 46499 |
| Copyright terms: Public domain | W3C validator |