MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1 Structured version   Visualization version   GIF version

Theorem resabs1 5977
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 5963 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 4186 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 5945 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 217 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4eqtrid 2776 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  wss 3914  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by:  resabs1i  5978  resabs1d  5979  resabs2  5980  resiima  6047  fun2ssres  6561  fssres2  6728  smores3  8322  setsres  17148  gsum2dlem2  19901  lindsss  21733  resthauslem  23250  ptcmpfi  23700  tsmsres  24031  ressxms  24413  nrginvrcn  24580  xrge0gsumle  24722  lebnumii  24865  dvmptresicc  25817  dfrelog  26474  relogf1o  26475  dvlog  26560  dvlog2  26562  efopnlem2  26566  wilthlem2  26979  nosupres  27619  nosupbnd2lem1  27627  noinfres  27634  noinfbnd2lem1  27642  nosupinfsep  27644  gsumle  33038  rrhre  34011  iwrdsplit  34378  rpsqrtcn  34584  pthhashvtx  35115  cvmsss2  35261  mbfposadd  37661  mzpcompact2lem  42739  eldioph2  42750  diophin  42760  diophrex  42763  2rexfrabdioph  42784  3rexfrabdioph  42785  4rexfrabdioph  42786  6rexfrabdioph  42787  7rexfrabdioph  42788  fourierdlem46  46150  fourierdlem57  46161  fourierdlem111  46215  fouriersw  46229  psmeasurelem  46468
  Copyright terms: Public domain W3C validator