| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5952 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 2 | sseqin2 4182 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 3 | reseq2 5934 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3910 ⊆ wss 3911 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: resabs1i 5967 resabs1d 5968 resabs2 5969 resiima 6036 fun2ssres 6545 fssres2 6710 smores3 8299 setsres 17124 gsum2dlem2 19877 lindsss 21709 resthauslem 23226 ptcmpfi 23676 tsmsres 24007 ressxms 24389 nrginvrcn 24556 xrge0gsumle 24698 lebnumii 24841 dvmptresicc 25793 dfrelog 26450 relogf1o 26451 dvlog 26536 dvlog2 26538 efopnlem2 26542 wilthlem2 26955 nosupres 27595 nosupbnd2lem1 27603 noinfres 27610 noinfbnd2lem1 27618 nosupinfsep 27620 gsumle 33011 rrhre 33984 iwrdsplit 34351 rpsqrtcn 34557 pthhashvtx 35088 cvmsss2 35234 mbfposadd 37634 mzpcompact2lem 42712 eldioph2 42723 diophin 42733 diophrex 42736 2rexfrabdioph 42757 3rexfrabdioph 42758 4rexfrabdioph 42759 6rexfrabdioph 42760 7rexfrabdioph 42761 fourierdlem46 46123 fourierdlem57 46134 fourierdlem111 46188 fouriersw 46202 psmeasurelem 46441 |
| Copyright terms: Public domain | W3C validator |