Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5893 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
2 | sseqin2 4146 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
3 | reseq2 5875 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: resabs1d 5911 resabs2 5912 resiima 5973 fun2ssres 6463 fssres2 6626 smores3 8155 setsres 16807 gsum2dlem2 19487 lindsss 20941 resthauslem 22422 ptcmpfi 22872 tsmsres 23203 ressxms 23587 nrginvrcn 23762 xrge0gsumle 23902 lebnumii 24035 dvmptresicc 24985 dfrelog 25626 relogf1o 25627 dvlog 25711 dvlog2 25713 efopnlem2 25717 wilthlem2 26123 gsumle 31252 rrhre 31871 iwrdsplit 32254 rpsqrtcn 32473 pthhashvtx 32989 cvmsss2 33136 nosupres 33837 nosupbnd2lem1 33845 noinfres 33852 noinfbnd2lem1 33860 nosupinfsep 33862 mbfposadd 35751 mzpcompact2lem 40489 eldioph2 40500 diophin 40510 diophrex 40513 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 resabs1i 42583 fourierdlem46 43583 fourierdlem57 43594 fourierdlem111 43648 fouriersw 43662 psmeasurelem 43898 |
Copyright terms: Public domain | W3C validator |