MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1 Structured version   Visualization version   GIF version

Theorem resabs1 5962
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 5948 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 4172 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 5930 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 217 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4eqtrid 2780 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3897  wss 3898  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5158  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  resabs1i  5963  resabs1d  5964  resabs2  5965  resiima  6032  fun2ssres  6534  fssres2  6699  smores3  8282  setsres  17096  gsum2dlem2  19891  gsumle  20065  lindsss  21770  resthauslem  23298  ptcmpfi  23748  tsmsres  24079  ressxms  24460  nrginvrcn  24627  xrge0gsumle  24769  lebnumii  24912  dvmptresicc  25864  dfrelog  26521  relogf1o  26522  dvlog  26607  dvlog2  26609  efopnlem2  26613  wilthlem2  27026  nosupres  27666  nosupbnd2lem1  27674  noinfres  27681  noinfbnd2lem1  27689  nosupinfsep  27691  rrhre  34106  iwrdsplit  34472  rpsqrtcn  34678  pthhashvtx  35244  cvmsss2  35390  mbfposadd  37780  mzpcompact2lem  42908  eldioph2  42919  diophin  42929  diophrex  42932  2rexfrabdioph  42953  3rexfrabdioph  42954  4rexfrabdioph  42955  6rexfrabdioph  42956  7rexfrabdioph  42957  fourierdlem46  46312  fourierdlem57  46323  fourierdlem111  46377  fouriersw  46391  psmeasurelem  46630
  Copyright terms: Public domain W3C validator