MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1 Structured version   Visualization version   GIF version

Theorem resabs1 5950
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 5936 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 4168 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 5918 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 217 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4eqtrid 2778 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  wss 3897  cres 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149  df-xp 5617  df-rel 5618  df-res 5623
This theorem is referenced by:  resabs1i  5951  resabs1d  5952  resabs2  5953  resiima  6020  fun2ssres  6521  fssres2  6686  smores3  8268  setsres  17084  gsum2dlem2  19878  gsumle  20052  lindsss  21756  resthauslem  23273  ptcmpfi  23723  tsmsres  24054  ressxms  24435  nrginvrcn  24602  xrge0gsumle  24744  lebnumii  24887  dvmptresicc  25839  dfrelog  26496  relogf1o  26497  dvlog  26582  dvlog2  26584  efopnlem2  26588  wilthlem2  27001  nosupres  27641  nosupbnd2lem1  27649  noinfres  27656  noinfbnd2lem1  27664  nosupinfsep  27666  rrhre  34026  iwrdsplit  34392  rpsqrtcn  34598  pthhashvtx  35164  cvmsss2  35310  mbfposadd  37707  mzpcompact2lem  42784  eldioph2  42795  diophin  42805  diophrex  42808  2rexfrabdioph  42829  3rexfrabdioph  42830  4rexfrabdioph  42831  6rexfrabdioph  42832  7rexfrabdioph  42833  fourierdlem46  46190  fourierdlem57  46201  fourierdlem111  46255  fouriersw  46269  psmeasurelem  46508
  Copyright terms: Public domain W3C validator