![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5705 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
2 | sseqin2 4074 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
3 | reseq2 5683 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
4 | 2, 3 | sylbi 209 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
5 | 1, 4 | syl5eq 2820 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∩ cin 3824 ⊆ wss 3825 ↾ cres 5402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-opab 4986 df-xp 5406 df-rel 5407 df-res 5412 |
This theorem is referenced by: resabs1d 5723 resabs2 5724 resiima 5778 fun2ssres 6226 fssres2 6369 smores3 7787 setsres 16371 gsum2dlem2 18834 lindsss 20660 resthauslem 21665 ptcmpfi 22115 tsmsres 22445 ressxms 22828 nrginvrcn 22994 xrge0gsumle 23134 lebnumii 23263 dfrelog 24840 relogf1o 24841 dvlog 24925 dvlog2 24927 efopnlem2 24931 wilthlem2 25338 gsumle 30478 rrhre 30863 iwrdsplit 31247 iwrdsplitOLD 31248 rpsqrtcn 31473 cvmsss2 32066 nosupres 32668 nosupbnd2lem1 32676 mbfposadd 34328 mzpcompact2lem 38688 eldioph2 38699 diophin 38710 diophrex 38713 2rexfrabdioph 38734 3rexfrabdioph 38735 4rexfrabdioph 38736 6rexfrabdioph 38737 7rexfrabdioph 38738 resabs1i 40782 dvmptresicc 41580 fourierdlem46 41814 fourierdlem57 41825 fourierdlem111 41879 fouriersw 41893 psmeasurelem 42129 |
Copyright terms: Public domain | W3C validator |