![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 6013 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
2 | sseqin2 4231 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
3 | reseq2 5995 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
5 | 1, 4 | eqtrid 2787 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3962 ⊆ wss 3963 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-xp 5695 df-rel 5696 df-res 5701 |
This theorem is referenced by: resabs1d 6028 resabs2 6029 resiima 6096 fun2ssres 6613 fssres2 6777 smores3 8392 setsres 17212 gsum2dlem2 20004 lindsss 21862 resthauslem 23387 ptcmpfi 23837 tsmsres 24168 ressxms 24554 nrginvrcn 24729 xrge0gsumle 24869 lebnumii 25012 dvmptresicc 25966 dfrelog 26622 relogf1o 26623 dvlog 26708 dvlog2 26710 efopnlem2 26714 wilthlem2 27127 nosupres 27767 nosupbnd2lem1 27775 noinfres 27782 noinfbnd2lem1 27790 nosupinfsep 27792 gsumle 33084 rrhre 33984 iwrdsplit 34369 rpsqrtcn 34587 pthhashvtx 35112 cvmsss2 35259 mbfposadd 37654 mzpcompact2lem 42739 eldioph2 42750 diophin 42760 diophrex 42763 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 resabs1i 45085 fourierdlem46 46108 fourierdlem57 46119 fourierdlem111 46173 fouriersw 46187 psmeasurelem 46426 |
Copyright terms: Public domain | W3C validator |