| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5947 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 2 | sseqin2 4176 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 3 | reseq2 5929 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3904 ⊆ wss 3905 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: resabs1i 5962 resabs1d 5963 resabs2 5964 resiima 6031 fun2ssres 6531 fssres2 6696 smores3 8283 setsres 17108 gsum2dlem2 19869 gsumle 20043 lindsss 21750 resthauslem 23267 ptcmpfi 23717 tsmsres 24048 ressxms 24430 nrginvrcn 24597 xrge0gsumle 24739 lebnumii 24882 dvmptresicc 25834 dfrelog 26491 relogf1o 26492 dvlog 26577 dvlog2 26579 efopnlem2 26583 wilthlem2 26996 nosupres 27636 nosupbnd2lem1 27644 noinfres 27651 noinfbnd2lem1 27659 nosupinfsep 27661 rrhre 34007 iwrdsplit 34374 rpsqrtcn 34580 pthhashvtx 35120 cvmsss2 35266 mbfposadd 37666 mzpcompact2lem 42744 eldioph2 42755 diophin 42765 diophrex 42768 2rexfrabdioph 42789 3rexfrabdioph 42790 4rexfrabdioph 42791 6rexfrabdioph 42792 7rexfrabdioph 42793 fourierdlem46 46153 fourierdlem57 46164 fourierdlem111 46218 fouriersw 46232 psmeasurelem 46471 |
| Copyright terms: Public domain | W3C validator |