MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdgn1frgrv2 Structured version   Visualization version   GIF version

Theorem vdgn1frgrv2 28561
Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn1frgrv2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdgn1frgrv2 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))

Proof of Theorem vdgn1frgrv2
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 28526 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 614 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
32adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
4 vdn1frgrv2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2738 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
7 eqid 2738 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
84, 5, 6, 7vtxdusgrval 27757 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
93, 8syl 17 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
10 eqid 2738 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
114, 103cyclfrgrrn2 28552 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
1211adantlr 711 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
13 preq1 4666 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑎, 𝑏} = {𝑁, 𝑏})
1413eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑏} ∈ (Edg‘𝐺)))
15 preq2 4667 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑐, 𝑎} = {𝑐, 𝑁})
1615eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑐, 𝑎} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
1714, 163anbi13d 1436 . . . . . . . . . . . . . 14 (𝑎 = 𝑁 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)) ↔ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
1817anbi2d 628 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → ((𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
19182rexbidv 3228 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
2019rspcva 3550 . . . . . . . . . . 11 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
211adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ USGraph)
22 simplll 771 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑏𝑐)
23 3simpb 1147 . . . . . . . . . . . . . . . . . 18 (({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
2423ad3antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
255, 10usgr2edg1 27482 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USGraph ∧ 𝑏𝑐) ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2621, 22, 24, 25syl21anc 834 . . . . . . . . . . . . . . . 16 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2726a1d 25 . . . . . . . . . . . . . . 15 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2827ex 412 . . . . . . . . . . . . . 14 (((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))
2928ex 412 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3029a1i 11 . . . . . . . . . . . 12 ((𝑏𝑉𝑐𝑉) → ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3130rexlimivv 3220 . . . . . . . . . . 11 (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3220, 31syl 17 . . . . . . . . . 10 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3332ex 412 . . . . . . . . 9 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3433pm2.43a 54 . . . . . . . 8 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3534com24 95 . . . . . . 7 (𝑁𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3635com3r 87 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑁𝑉 → (1 < (♯‘𝑉) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3736imp31 417 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3812, 37mpd 15 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
39 fvex 6769 . . . . . . . . 9 (iEdg‘𝐺) ∈ V
4039dmex 7732 . . . . . . . 8 dom (iEdg‘𝐺) ∈ V
4140a1i 11 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → dom (iEdg‘𝐺) ∈ V)
42 rabexg 5250 . . . . . . 7 (dom (iEdg‘𝐺) ∈ V → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
43 hash1snb 14062 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
4441, 42, 433syl 18 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
45 reusn 4660 . . . . . 6 (∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖})
4644, 45bitr4di 288 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4746necon3abid 2979 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1 ↔ ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4838, 47mpbird 256 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1)
499, 48eqnetrd 3010 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1)
5049ex 412 1 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  Vcvv 3422  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  cfv 6418  1c1 10803   < clt 10940  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USGraphcusgr 27422  VtxDegcvtxdg 27735   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-usgr 27424  df-vtxdg 27736  df-frgr 28524
This theorem is referenced by:  vdgn1frgrv3  28562  vdgfrgrgt2  28563
  Copyright terms: Public domain W3C validator