MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdgn1frgrv2 Structured version   Visualization version   GIF version

Theorem vdgn1frgrv2 30225
Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn1frgrv2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdgn1frgrv2 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))

Proof of Theorem vdgn1frgrv2
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 30190 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 615 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
32adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
4 vdn1frgrv2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 eqid 2729 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2729 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
7 eqid 2729 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
84, 5, 6, 7vtxdusgrval 29415 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
93, 8syl 17 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
10 eqid 2729 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
114, 103cyclfrgrrn2 30216 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
1211adantlr 715 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
13 preq1 4697 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑎, 𝑏} = {𝑁, 𝑏})
1413eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑏} ∈ (Edg‘𝐺)))
15 preq2 4698 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑐, 𝑎} = {𝑐, 𝑁})
1615eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑐, 𝑎} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
1714, 163anbi13d 1440 . . . . . . . . . . . . . 14 (𝑎 = 𝑁 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)) ↔ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
1817anbi2d 630 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → ((𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
19182rexbidv 3202 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
2019rspcva 3586 . . . . . . . . . . 11 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
211adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ USGraph)
22 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑏𝑐)
23 3simpb 1149 . . . . . . . . . . . . . . . . . 18 (({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
2423ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
255, 10usgr2edg1 29139 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USGraph ∧ 𝑏𝑐) ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2621, 22, 24, 25syl21anc 837 . . . . . . . . . . . . . . . 16 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2726a1d 25 . . . . . . . . . . . . . . 15 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2827ex 412 . . . . . . . . . . . . . 14 (((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))
2928ex 412 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3029a1i 11 . . . . . . . . . . . 12 ((𝑏𝑉𝑐𝑉) → ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3130rexlimivv 3179 . . . . . . . . . . 11 (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3220, 31syl 17 . . . . . . . . . 10 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3332ex 412 . . . . . . . . 9 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3433pm2.43a 54 . . . . . . . 8 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3534com24 95 . . . . . . 7 (𝑁𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3635com3r 87 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑁𝑉 → (1 < (♯‘𝑉) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3736imp31 417 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3812, 37mpd 15 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
39 fvex 6871 . . . . . . . . 9 (iEdg‘𝐺) ∈ V
4039dmex 7885 . . . . . . . 8 dom (iEdg‘𝐺) ∈ V
4140a1i 11 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → dom (iEdg‘𝐺) ∈ V)
42 rabexg 5292 . . . . . . 7 (dom (iEdg‘𝐺) ∈ V → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
43 hash1snb 14384 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
4441, 42, 433syl 18 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
45 reusn 4691 . . . . . 6 (∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖})
4644, 45bitr4di 289 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4746necon3abid 2961 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1 ↔ ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4838, 47mpbird 257 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1)
499, 48eqnetrd 2992 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (♯‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1)
5049ex 412 1 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  {crab 3405  Vcvv 3447  {csn 4589  {cpr 4591   class class class wbr 5107  dom cdm 5638  cfv 6511  1c1 11069   < clt 11208  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  USGraphcusgr 29076  VtxDegcvtxdg 29393   FriendGraph cfrgr 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-hash 14296  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-umgr 29010  df-usgr 29078  df-vtxdg 29394  df-frgr 30188
This theorem is referenced by:  vdgn1frgrv3  30226  vdgfrgrgt2  30227
  Copyright terms: Public domain W3C validator