| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euabsn | Structured version Visualization version GIF version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| euabsn | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 4706 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∣ 𝜑} = {𝑥} | |
| 3 | nfab1 2901 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 4 | 3 | nfeq1 2915 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} = {𝑦} |
| 5 | sneq 4616 | . . . 4 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 6 | 5 | eqeq2d 2747 | . . 3 ⊢ (𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑥} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
| 7 | 2, 4, 6 | cbvexv1 2344 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝜑} = {𝑥} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 8 | 1, 7 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∃!weu 2568 {cab 2714 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-nfc 2886 df-sn 4607 |
| This theorem is referenced by: eusn 4711 uniintsn 4966 args 6084 opabiotadm 6965 mapsnd 8905 |
| Copyright terms: Public domain | W3C validator |