MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabsn Structured version   Visualization version   GIF version

Theorem euabsn 4751
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})

Proof of Theorem euabsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4750 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 nfv 1913 . . 3 𝑦{𝑥𝜑} = {𝑥}
3 nfab1 2910 . . . 4 𝑥{𝑥𝜑}
43nfeq1 2924 . . 3 𝑥{𝑥𝜑} = {𝑦}
5 sneq 4658 . . . 4 (𝑥 = 𝑦 → {𝑥} = {𝑦})
65eqeq2d 2751 . . 3 (𝑥 = 𝑦 → ({𝑥𝜑} = {𝑥} ↔ {𝑥𝜑} = {𝑦}))
72, 4, 6cbvexv1 2348 . 2 (∃𝑥{𝑥𝜑} = {𝑥} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
81, 7bitr4i 278 1 (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  ∃!weu 2571  {cab 2717  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-nfc 2895  df-sn 4649
This theorem is referenced by:  eusn  4755  uniintsn  5009  args  6122  opabiotadm  7003  mapsnd  8944
  Copyright terms: Public domain W3C validator