MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabsn Structured version   Visualization version   GIF version

Theorem euabsn 4680
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})

Proof of Theorem euabsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4679 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 nfv 1915 . . 3 𝑦{𝑥𝜑} = {𝑥}
3 nfab1 2897 . . . 4 𝑥{𝑥𝜑}
43nfeq1 2911 . . 3 𝑥{𝑥𝜑} = {𝑦}
5 sneq 4587 . . . 4 (𝑥 = 𝑦 → {𝑥} = {𝑦})
65eqeq2d 2744 . . 3 (𝑥 = 𝑦 → ({𝑥𝜑} = {𝑥} ↔ {𝑥𝜑} = {𝑦}))
72, 4, 6cbvexv1 2344 . 2 (∃𝑥{𝑥𝜑} = {𝑥} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
81, 7bitr4i 278 1 (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  ∃!weu 2565  {cab 2711  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-nfc 2882  df-sn 4578
This theorem is referenced by:  eusn  4684  uniintsn  4937  args  6048  opabiotadm  6912  mapsnd  8820
  Copyright terms: Public domain W3C validator