MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabsn Structured version   Visualization version   GIF version

Theorem euabsn 4725
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})

Proof of Theorem euabsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4724 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 nfv 1913 . . 3 𝑦{𝑥𝜑} = {𝑥}
3 nfab1 2906 . . . 4 𝑥{𝑥𝜑}
43nfeq1 2920 . . 3 𝑥{𝑥𝜑} = {𝑦}
5 sneq 4635 . . . 4 (𝑥 = 𝑦 → {𝑥} = {𝑦})
65eqeq2d 2747 . . 3 (𝑥 = 𝑦 → ({𝑥𝜑} = {𝑥} ↔ {𝑥𝜑} = {𝑦}))
72, 4, 6cbvexv1 2343 . 2 (∃𝑥{𝑥𝜑} = {𝑥} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
81, 7bitr4i 278 1 (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778  ∃!weu 2567  {cab 2713  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-nfc 2891  df-sn 4626
This theorem is referenced by:  eusn  4729  uniintsn  4984  args  6109  opabiotadm  6989  mapsnd  8927
  Copyright terms: Public domain W3C validator