![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euabsn | Structured version Visualization version GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
euabsn | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 4750 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∣ 𝜑} = {𝑥} | |
3 | nfab1 2910 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
4 | 3 | nfeq1 2924 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} = {𝑦} |
5 | sneq 4658 | . . . 4 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
6 | 5 | eqeq2d 2751 | . . 3 ⊢ (𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑥} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
7 | 2, 4, 6 | cbvexv1 2348 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝜑} = {𝑥} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
8 | 1, 7 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∃!weu 2571 {cab 2717 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-nfc 2895 df-sn 4649 |
This theorem is referenced by: eusn 4755 uniintsn 5009 args 6122 opabiotadm 7003 mapsnd 8944 |
Copyright terms: Public domain | W3C validator |