MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuen1 Structured version   Visualization version   GIF version

Theorem reuen1 9067
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
reuen1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1o)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuen1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reusn 4726 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
2 en1 9065 . 2 ({𝑥𝐴𝜑} ≈ 1o ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
31, 2bitr4i 278 1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778  ∃!wreu 3377  {crab 3435  {csn 4625   class class class wbr 5142  1oc1o 8500  cen 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-1o 8507  df-en 8987
This theorem is referenced by:  euen1  9068  isppw  27158
  Copyright terms: Public domain W3C validator