MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond3 Structured version   Visualization version   GIF version

Theorem frcond3 30171
Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond3 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉

Proof of Theorem frcond3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2frcond1 30168 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
43imp 406 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
5 ssrab2 4039 . . . . . . . . . 10 {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉
6 sseq1 3969 . . . . . . . . . 10 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉))
75, 6mpbii 233 . . . . . . . . 9 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉)
8 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
98snss 4745 . . . . . . . . 9 (𝑥𝑉 ↔ {𝑥} ⊆ 𝑉)
107, 9sylibr 234 . . . . . . . 8 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥𝑉)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥𝑉)
12 frgrusgr 30163 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
131, 2nbusgr 29252 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸})
141, 2nbusgr 29252 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})
1513, 14ineq12d 4180 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1612, 15syl 17 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1716adantr 480 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1817adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
19 inrab 4275 . . . . . . . . 9 ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}
2018, 19eqtrdi 2780 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)})
21 prcom 4692 . . . . . . . . . . . . . 14 {𝐶, 𝑏} = {𝑏, 𝐶}
2221eleq1i 2819 . . . . . . . . . . . . 13 ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸)
2322anbi2i 623 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
24 prex 5387 . . . . . . . . . . . . 13 {𝐴, 𝑏} ∈ V
25 prex 5387 . . . . . . . . . . . . 13 {𝑏, 𝐶} ∈ V
2624, 25prss 4780 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2723, 26bitri 275 . . . . . . . . . . 11 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2827a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ 𝑏𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
2928rabbidva 3409 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
3029adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
31 simpr 484 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
3220, 30, 313eqtrd 2768 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
3311, 32jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3433ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
3534eximdv 1917 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
36 reusn 4687 . . . 4 (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
37 df-rex 3054 . . . 4 (∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3835, 36, 373imtr4g 296 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
394, 38mpd 15 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
4039ex 412 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3349  {crab 3402  cin 3910  wss 3911  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950  USGraphcusgr 29052   NeighbVtx cnbgr 29235   FriendGraph cfrgr 30160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-edg 28951  df-upgr 28985  df-umgr 28986  df-usgr 29054  df-nbgr 29236  df-frgr 30161
This theorem is referenced by:  frcond4  30172  frgrncvvdeqlem3  30203
  Copyright terms: Public domain W3C validator