MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond3 Structured version   Visualization version   GIF version

Theorem frcond3 30250
Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond3 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉

Proof of Theorem frcond3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2frcond1 30247 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
43imp 406 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
5 ssrab2 4055 . . . . . . . . . 10 {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉
6 sseq1 3984 . . . . . . . . . 10 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉))
75, 6mpbii 233 . . . . . . . . 9 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉)
8 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
98snss 4761 . . . . . . . . 9 (𝑥𝑉 ↔ {𝑥} ⊆ 𝑉)
107, 9sylibr 234 . . . . . . . 8 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥𝑉)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥𝑉)
12 frgrusgr 30242 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
131, 2nbusgr 29328 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸})
141, 2nbusgr 29328 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})
1513, 14ineq12d 4196 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1612, 15syl 17 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1716adantr 480 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1817adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
19 inrab 4291 . . . . . . . . 9 ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}
2018, 19eqtrdi 2786 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)})
21 prcom 4708 . . . . . . . . . . . . . 14 {𝐶, 𝑏} = {𝑏, 𝐶}
2221eleq1i 2825 . . . . . . . . . . . . 13 ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸)
2322anbi2i 623 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
24 prex 5407 . . . . . . . . . . . . 13 {𝐴, 𝑏} ∈ V
25 prex 5407 . . . . . . . . . . . . 13 {𝑏, 𝐶} ∈ V
2624, 25prss 4796 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2723, 26bitri 275 . . . . . . . . . . 11 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2827a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ 𝑏𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
2928rabbidva 3422 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
3029adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
31 simpr 484 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
3220, 30, 313eqtrd 2774 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
3311, 32jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3433ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
3534eximdv 1917 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
36 reusn 4703 . . . 4 (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
37 df-rex 3061 . . . 4 (∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3835, 36, 373imtr4g 296 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
394, 38mpd 15 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
4039ex 412 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  ∃!wreu 3357  {crab 3415  cin 3925  wss 3926  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128   NeighbVtx cnbgr 29311   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-upgr 29061  df-umgr 29062  df-usgr 29130  df-nbgr 29312  df-frgr 30240
This theorem is referenced by:  frcond4  30251  frgrncvvdeqlem3  30282
  Copyright terms: Public domain W3C validator