MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond3 Structured version   Visualization version   GIF version

Theorem frcond3 30301
Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond3 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉

Proof of Theorem frcond3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2frcond1 30298 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
43imp 406 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
5 ssrab2 4103 . . . . . . . . . 10 {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉
6 sseq1 4034 . . . . . . . . . 10 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉))
75, 6mpbii 233 . . . . . . . . 9 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉)
8 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
98snss 4810 . . . . . . . . 9 (𝑥𝑉 ↔ {𝑥} ⊆ 𝑉)
107, 9sylibr 234 . . . . . . . 8 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥𝑉)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥𝑉)
12 frgrusgr 30293 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
131, 2nbusgr 29384 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸})
141, 2nbusgr 29384 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})
1513, 14ineq12d 4242 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1612, 15syl 17 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1716adantr 480 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1817adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
19 inrab 4335 . . . . . . . . 9 ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}
2018, 19eqtrdi 2796 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)})
21 prcom 4757 . . . . . . . . . . . . . 14 {𝐶, 𝑏} = {𝑏, 𝐶}
2221eleq1i 2835 . . . . . . . . . . . . 13 ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸)
2322anbi2i 622 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
24 prex 5452 . . . . . . . . . . . . 13 {𝐴, 𝑏} ∈ V
25 prex 5452 . . . . . . . . . . . . 13 {𝑏, 𝐶} ∈ V
2624, 25prss 4845 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2723, 26bitri 275 . . . . . . . . . . 11 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2827a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ 𝑏𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
2928rabbidva 3450 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
3029adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
31 simpr 484 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
3220, 30, 313eqtrd 2784 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
3311, 32jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3433ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
3534eximdv 1916 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
36 reusn 4752 . . . 4 (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
37 df-rex 3077 . . . 4 (∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3835, 36, 373imtr4g 296 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
394, 38mpd 15 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
4039ex 412 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  ∃!wreu 3386  {crab 3443  cin 3975  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184   NeighbVtx cnbgr 29367   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-frgr 30291
This theorem is referenced by:  frcond4  30302  frgrncvvdeqlem3  30333
  Copyright terms: Public domain W3C validator