MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond3 Structured version   Visualization version   GIF version

Theorem frcond3 30205
Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond3 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉

Proof of Theorem frcond3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2frcond1 30202 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
43imp 406 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
5 ssrab2 4046 . . . . . . . . . 10 {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉
6 sseq1 3975 . . . . . . . . . 10 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉))
75, 6mpbii 233 . . . . . . . . 9 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉)
8 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
98snss 4752 . . . . . . . . 9 (𝑥𝑉 ↔ {𝑥} ⊆ 𝑉)
107, 9sylibr 234 . . . . . . . 8 ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥𝑉)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥𝑉)
12 frgrusgr 30197 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
131, 2nbusgr 29283 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸})
141, 2nbusgr 29283 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})
1513, 14ineq12d 4187 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1612, 15syl 17 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1716adantr 480 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
1817adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}))
19 inrab 4282 . . . . . . . . 9 ({𝑏𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}
2018, 19eqtrdi 2781 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)})
21 prcom 4699 . . . . . . . . . . . . . 14 {𝐶, 𝑏} = {𝑏, 𝐶}
2221eleq1i 2820 . . . . . . . . . . . . 13 ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸)
2322anbi2i 623 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
24 prex 5395 . . . . . . . . . . . . 13 {𝐴, 𝑏} ∈ V
25 prex 5395 . . . . . . . . . . . . 13 {𝑏, 𝐶} ∈ V
2624, 25prss 4787 . . . . . . . . . . . 12 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2723, 26bitri 275 . . . . . . . . . . 11 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2827a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ 𝑏𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
2928rabbidva 3415 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
3029adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸})
31 simpr 484 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
3220, 30, 313eqtrd 2769 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
3311, 32jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) ∧ {𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3433ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ({𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
3534eximdv 1917 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})))
36 reusn 4694 . . . 4 (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥})
37 df-rex 3055 . . . 4 (∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
3835, 36, 373imtr4g 296 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
394, 38mpd 15 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶)) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})
4039ex 412 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃𝑥𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  ∃!wreu 3354  {crab 3408  cin 3916  wss 3917  {csn 4592  {cpr 4594  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083   NeighbVtx cnbgr 29266   FriendGraph cfrgr 30194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-umgr 29017  df-usgr 29085  df-nbgr 29267  df-frgr 30195
This theorem is referenced by:  frcond4  30206  frgrncvvdeqlem3  30237
  Copyright terms: Public domain W3C validator