Step | Hyp | Ref
| Expression |
1 | | frcond1.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frcond1.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | frcond1 28155 |
. . . 4
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
4 | 3 | imp 410 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
5 | | ssrab2 3986 |
. . . . . . . . . 10
⊢ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 |
6 | | sseq1 3919 |
. . . . . . . . . 10
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉)) |
7 | 5, 6 | mpbii 236 |
. . . . . . . . 9
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉) |
8 | | vex 3413 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
9 | 8 | snss 4679 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑉 ↔ {𝑥} ⊆ 𝑉) |
10 | 7, 9 | sylibr 237 |
. . . . . . . 8
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥 ∈ 𝑉) |
11 | 10 | adantl 485 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥 ∈ 𝑉) |
12 | | frgrusgr 28150 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
13 | 1, 2 | nbusgr 27243 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸}) |
14 | 1, 2 | nbusgr 27243 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) |
15 | 13, 14 | ineq12d 4120 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
16 | 12, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ FriendGraph →
((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
17 | 16 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
18 | 17 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
19 | | inrab 4211 |
. . . . . . . . 9
⊢ ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} |
20 | 18, 19 | eqtrdi 2809 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}) |
21 | | prcom 4628 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝑏} = {𝑏, 𝐶} |
22 | 21 | eleq1i 2842 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸) |
23 | 22 | anbi2i 625 |
. . . . . . . . . . . 12
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
24 | | prex 5304 |
. . . . . . . . . . . . 13
⊢ {𝐴, 𝑏} ∈ V |
25 | | prex 5304 |
. . . . . . . . . . . . 13
⊢ {𝑏, 𝐶} ∈ V |
26 | 24, 25 | prss 4713 |
. . . . . . . . . . . 12
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
27 | 23, 26 | bitri 278 |
. . . . . . . . . . 11
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ 𝑏 ∈ 𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
29 | 28 | rabbidva 3390 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸}) |
30 | 29 | adantr 484 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸}) |
31 | | simpr 488 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) |
32 | 20, 30, 31 | 3eqtrd 2797 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}) |
33 | 11, 32 | jca 515 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
34 | 33 | ex 416 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))) |
35 | 34 | eximdv 1918 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → (∃𝑥{𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))) |
36 | | reusn 4623 |
. . . 4
⊢
(∃!𝑏 ∈
𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) |
37 | | df-rex 3076 |
. . . 4
⊢
(∃𝑥 ∈
𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
38 | 35, 36, 37 | 3imtr4g 299 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → (∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
39 | 4, 38 | mpd 15 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}) |
40 | 39 | ex 416 |
1
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |