| Step | Hyp | Ref
| Expression |
| 1 | | frcond1.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | frcond1.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
| 3 | 1, 2 | frcond1 30285 |
. . . 4
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
| 4 | 3 | imp 406 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
| 5 | | ssrab2 4080 |
. . . . . . . . . 10
⊢ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 |
| 6 | | sseq1 4009 |
. . . . . . . . . 10
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉)) |
| 7 | 5, 6 | mpbii 233 |
. . . . . . . . 9
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉) |
| 8 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 9 | 8 | snss 4785 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑉 ↔ {𝑥} ⊆ 𝑉) |
| 10 | 7, 9 | sylibr 234 |
. . . . . . . 8
⊢ ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → 𝑥 ∈ 𝑉) |
| 11 | 10 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → 𝑥 ∈ 𝑉) |
| 12 | | frgrusgr 30280 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
| 13 | 1, 2 | nbusgr 29366 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸}) |
| 14 | 1, 2 | nbusgr 29366 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐶) = {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) |
| 15 | 13, 14 | ineq12d 4221 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
| 16 | 12, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ FriendGraph →
((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
| 17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
| 18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸})) |
| 19 | | inrab 4316 |
. . . . . . . . 9
⊢ ({𝑏 ∈ 𝑉 ∣ {𝐴, 𝑏} ∈ 𝐸} ∩ {𝑏 ∈ 𝑉 ∣ {𝐶, 𝑏} ∈ 𝐸}) = {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} |
| 20 | 18, 19 | eqtrdi 2793 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)}) |
| 21 | | prcom 4732 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝑏} = {𝑏, 𝐶} |
| 22 | 21 | eleq1i 2832 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝐶} ∈ 𝐸) |
| 23 | 22 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
| 24 | | prex 5437 |
. . . . . . . . . . . . 13
⊢ {𝐴, 𝑏} ∈ V |
| 25 | | prex 5437 |
. . . . . . . . . . . . 13
⊢ {𝑏, 𝐶} ∈ V |
| 26 | 24, 25 | prss 4820 |
. . . . . . . . . . . 12
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
| 27 | 23, 26 | bitri 275 |
. . . . . . . . . . 11
⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ 𝑏 ∈ 𝑉) → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
| 29 | 28 | rabbidva 3443 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸}) |
| 30 | 29 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏 ∈ 𝑉 ∣ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝐶, 𝑏} ∈ 𝐸)} = {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸}) |
| 31 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) |
| 32 | 20, 30, 31 | 3eqtrd 2781 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}) |
| 33 | 11, 32 | jca 511 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) ∧ {𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) → (𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
| 34 | 33 | ex 412 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ({𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → (𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))) |
| 35 | 34 | eximdv 1917 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → (∃𝑥{𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥} → ∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}))) |
| 36 | | reusn 4727 |
. . . 4
⊢
(∃!𝑏 ∈
𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃𝑥{𝑏 ∈ 𝑉 ∣ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸} = {𝑥}) |
| 37 | | df-rex 3071 |
. . . 4
⊢
(∃𝑥 ∈
𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
| 38 | 35, 36, 37 | 3imtr4g 296 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → (∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |
| 39 | 4, 38 | mpd 15 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥}) |
| 40 | 39 | ex 412 |
1
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) |