MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a Structured version   Visualization version   GIF version

Theorem 2lgslem1a 26444
Description: Lemma 1 for 2lgslem1 26447. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16307 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12223 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad2antrr 722 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ0)
4 4nn 11986 . . . . . . . 8 4 ∈ ℕ
53, 4jctir 520 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
6 fldivnn0 13470 . . . . . . 7 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
7 nn0p1nn 12202 . . . . . . 7 ((⌊‘(𝑃 / 4)) ∈ ℕ0 → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
85, 6, 73syl 18 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
9 elnnuz 12551 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
108, 9sylib 217 . . . . 5 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
11 fzss1 13224 . . . . 5 (((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)))
12 rexss 3988 . . . . 5 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
1310, 11, 123syl 18 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
14 ancom 460 . . . . . 6 ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))))
152, 4jctir 520 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
1615, 6syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℕ0)
1716nn0zd 12353 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
1817ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (⌊‘(𝑃 / 4)) ∈ ℤ)
19 elfzelz 13185 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
20 zltp1le 12300 . . . . . . . . . . . . . 14 (((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2118, 19, 20syl2an 595 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2221bicomd 222 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖 ↔ (⌊‘(𝑃 / 4)) < 𝑖))
2322anbi1d 629 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2419adantl 481 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
2517peano2zd 12358 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2625adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2726ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
28 prmz 16308 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 oddm1d2 15997 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3130biimpa 476 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
3231ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
33 elfz 13174 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3424, 27, 32, 33syl3anc 1369 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
35 elfzle2 13189 . . . . . . . . . . . . 13 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ≤ ((𝑃 − 1) / 2))
3635adantl 481 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ≤ ((𝑃 − 1) / 2))
3736biantrud 531 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3823, 34, 373bitr4d 310 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (⌊‘(𝑃 / 4)) < 𝑖))
3928ad2antrr 722 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
40 2lgslem1a2 26443 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4139, 19, 40syl2an 595 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4238, 41bitrd 278 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑖 · 2)))
43 2lgslem1a1 26442 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
441, 43sylan 579 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
4544adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
46 oveq1 7262 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 · 2) = (𝑖 · 2))
4746oveq1d 7270 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝑘 · 2) mod 𝑃) = ((𝑖 · 2) mod 𝑃))
4846, 47eqeq12d 2754 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ↔ (𝑖 · 2) = ((𝑖 · 2) mod 𝑃)))
4948rspccva 3551 . . . . . . . . . . 11 ((∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5045, 49sylan 579 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5150breq2d 5082 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 / 2) < (𝑖 · 2) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
5242, 51bitrd 278 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
53 oveq1 7262 . . . . . . . . . 10 (𝑥 = (𝑖 · 2) → (𝑥 mod 𝑃) = ((𝑖 · 2) mod 𝑃))
5453eqcomd 2744 . . . . . . . . 9 (𝑥 = (𝑖 · 2) → ((𝑖 · 2) mod 𝑃) = (𝑥 mod 𝑃))
5554breq2d 5082 . . . . . . . 8 (𝑥 = (𝑖 · 2) → ((𝑃 / 2) < ((𝑖 · 2) mod 𝑃) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5652, 55sylan9bb 509 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) ∧ 𝑥 = (𝑖 · 2)) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5756pm5.32da 578 . . . . . 6 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5814, 57syl5bb 282 . . . . 5 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5958rexbidva 3224 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6013, 59bitrd 278 . . 3 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6160bicomd 222 . 2 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃)) ↔ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)))
6261rabbidva 3402 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cfl 13438   mod cmo 13517  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-dvds 15892  df-prm 16305
This theorem is referenced by:  2lgslem1  26447
  Copyright terms: Public domain W3C validator