MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a Structured version   Visualization version   GIF version

Theorem 2lgslem1a 25685
Description: Lemma 1 for 2lgslem1 25688. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prmnn 15873 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 11766 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad2antrr 714 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ0)
4 4nn 11523 . . . . . . . 8 4 ∈ ℕ
53, 4jctir 513 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
6 fldivnn0 13006 . . . . . . 7 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
7 nn0p1nn 11747 . . . . . . 7 ((⌊‘(𝑃 / 4)) ∈ ℕ0 → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
85, 6, 73syl 18 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
9 elnnuz 12095 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
108, 9sylib 210 . . . . 5 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
11 fzss1 12761 . . . . 5 (((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)))
12 rexss 3923 . . . . 5 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
1310, 11, 123syl 18 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
14 ancom 453 . . . . . 6 ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))))
152, 4jctir 513 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
1615, 6syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℕ0)
1716nn0zd 11897 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
1817ad2antrr 714 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (⌊‘(𝑃 / 4)) ∈ ℤ)
19 elfzelz 12723 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
20 zltp1le 11844 . . . . . . . . . . . . . 14 (((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2118, 19, 20syl2an 587 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2221bicomd 215 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖 ↔ (⌊‘(𝑃 / 4)) < 𝑖))
2322anbi1d 621 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2419adantl 474 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
2517peano2zd 11902 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2625adantr 473 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2726ad2antrr 714 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
28 prmz 15874 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 oddm1d2 15568 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3130biimpa 469 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
3231ad2antrr 714 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
33 elfz 12713 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3424, 27, 32, 33syl3anc 1352 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
35 elfzle2 12726 . . . . . . . . . . . . 13 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ≤ ((𝑃 − 1) / 2))
3635adantl 474 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ≤ ((𝑃 − 1) / 2))
3736biantrud 524 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3823, 34, 373bitr4d 303 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (⌊‘(𝑃 / 4)) < 𝑖))
3928ad2antrr 714 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
40 2lgslem1a2 25684 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4139, 19, 40syl2an 587 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4238, 41bitrd 271 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑖 · 2)))
43 2lgslem1a1 25683 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
441, 43sylan 572 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
4544adantr 473 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
46 oveq1 6982 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 · 2) = (𝑖 · 2))
4746oveq1d 6990 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝑘 · 2) mod 𝑃) = ((𝑖 · 2) mod 𝑃))
4846, 47eqeq12d 2788 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ↔ (𝑖 · 2) = ((𝑖 · 2) mod 𝑃)))
4948rspccva 3529 . . . . . . . . . . 11 ((∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5045, 49sylan 572 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5150breq2d 4938 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 / 2) < (𝑖 · 2) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
5242, 51bitrd 271 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
53 oveq1 6982 . . . . . . . . . 10 (𝑥 = (𝑖 · 2) → (𝑥 mod 𝑃) = ((𝑖 · 2) mod 𝑃))
5453eqcomd 2779 . . . . . . . . 9 (𝑥 = (𝑖 · 2) → ((𝑖 · 2) mod 𝑃) = (𝑥 mod 𝑃))
5554breq2d 4938 . . . . . . . 8 (𝑥 = (𝑖 · 2) → ((𝑃 / 2) < ((𝑖 · 2) mod 𝑃) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5652, 55sylan9bb 502 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) ∧ 𝑥 = (𝑖 · 2)) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5756pm5.32da 571 . . . . . 6 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5814, 57syl5bb 275 . . . . 5 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5958rexbidva 3236 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6013, 59bitrd 271 . . 3 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6160bicomd 215 . 2 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃)) ↔ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)))
6261rabbidva 3397 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3083  wrex 3084  {crab 3087  wss 3824   class class class wbr 4926  cfv 6186  (class class class)co 6975  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cle 10474  cmin 10669   / cdiv 11097  cn 11438  2c2 11494  4c4 11496  0cn0 11706  cz 11792  cuz 12057  ...cfz 12707  cfl 12974   mod cmo 13051  cdvds 15466  cprime 15870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-inf 8701  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-fz 12708  df-fl 12976  df-mod 13052  df-dvds 15467  df-prm 15871
This theorem is referenced by:  2lgslem1  25688
  Copyright terms: Public domain W3C validator