MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a Structured version   Visualization version   GIF version

Theorem 2lgslem1a 25973
Description: Lemma 1 for 2lgslem1 25976. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16007 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 11943 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad2antrr 725 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ0)
4 4nn 11708 . . . . . . . 8 4 ∈ ℕ
53, 4jctir 524 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
6 fldivnn0 13187 . . . . . . 7 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
7 nn0p1nn 11924 . . . . . . 7 ((⌊‘(𝑃 / 4)) ∈ ℕ0 → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
85, 6, 73syl 18 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
9 elnnuz 12270 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
108, 9sylib 221 . . . . 5 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
11 fzss1 12941 . . . . 5 (((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)))
12 rexss 4013 . . . . 5 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
1310, 11, 123syl 18 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
14 ancom 464 . . . . . 6 ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))))
152, 4jctir 524 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
1615, 6syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℕ0)
1716nn0zd 12073 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
1817ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (⌊‘(𝑃 / 4)) ∈ ℤ)
19 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
20 zltp1le 12020 . . . . . . . . . . . . . 14 (((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2118, 19, 20syl2an 598 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2221bicomd 226 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖 ↔ (⌊‘(𝑃 / 4)) < 𝑖))
2322anbi1d 632 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2419adantl 485 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
2517peano2zd 12078 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2625adantr 484 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2726ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
28 prmz 16008 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 oddm1d2 15700 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3130biimpa 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
3231ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
33 elfz 12891 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3424, 27, 32, 33syl3anc 1368 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
35 elfzle2 12906 . . . . . . . . . . . . 13 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ≤ ((𝑃 − 1) / 2))
3635adantl 485 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ≤ ((𝑃 − 1) / 2))
3736biantrud 535 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3823, 34, 373bitr4d 314 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (⌊‘(𝑃 / 4)) < 𝑖))
3928ad2antrr 725 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
40 2lgslem1a2 25972 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4139, 19, 40syl2an 598 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4238, 41bitrd 282 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑖 · 2)))
43 2lgslem1a1 25971 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
441, 43sylan 583 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
4544adantr 484 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
46 oveq1 7147 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 · 2) = (𝑖 · 2))
4746oveq1d 7155 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝑘 · 2) mod 𝑃) = ((𝑖 · 2) mod 𝑃))
4846, 47eqeq12d 2838 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ↔ (𝑖 · 2) = ((𝑖 · 2) mod 𝑃)))
4948rspccva 3597 . . . . . . . . . . 11 ((∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5045, 49sylan 583 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5150breq2d 5054 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 / 2) < (𝑖 · 2) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
5242, 51bitrd 282 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
53 oveq1 7147 . . . . . . . . . 10 (𝑥 = (𝑖 · 2) → (𝑥 mod 𝑃) = ((𝑖 · 2) mod 𝑃))
5453eqcomd 2828 . . . . . . . . 9 (𝑥 = (𝑖 · 2) → ((𝑖 · 2) mod 𝑃) = (𝑥 mod 𝑃))
5554breq2d 5054 . . . . . . . 8 (𝑥 = (𝑖 · 2) → ((𝑃 / 2) < ((𝑖 · 2) mod 𝑃) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5652, 55sylan9bb 513 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) ∧ 𝑥 = (𝑖 · 2)) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5756pm5.32da 582 . . . . . 6 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5814, 57syl5bb 286 . . . . 5 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5958rexbidva 3282 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6013, 59bitrd 282 . . 3 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6160bicomd 226 . 2 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃)) ↔ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)))
6261rabbidva 3453 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130  wrex 3131  {crab 3134  wss 3908   class class class wbr 5042  cfv 6334  (class class class)co 7140  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cfl 13155   mod cmo 13232  cdvds 15598  cprime 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-dvds 15599  df-prm 16005
This theorem is referenced by:  2lgslem1  25976
  Copyright terms: Public domain W3C validator