Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnfuzlem Structured version   Visualization version   GIF version

Theorem limsupmnfuzlem 43157
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnfuzlem.1 (𝜑𝑀 ∈ ℤ)
limsupmnfuzlem.2 𝑍 = (ℤ𝑀)
limsupmnfuzlem.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupmnfuzlem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem limsupmnfuzlem
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . 3 𝑗𝐹
2 limsupmnfuzlem.2 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 12533 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 3951 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupmnfuzlem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupmnf 43152 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
8 breq1 5073 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 341 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
109ralbidv 3120 . . . . . . . 8 (𝑘 = 𝑖 → (∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
1110cbvrexvw 3373 . . . . . . 7 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
1211biimpi 215 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
13 iftrue 4462 . . . . . . . . . . . . . 14 (𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
1413adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
15 limsupmnfuzlem.1 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
1615ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ∈ ℤ)
17 ceilcl 13490 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℤ)
1817ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ ℤ)
19 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ≤ (⌈‘𝑖))
202, 16, 18, 19eluzd 42839 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ 𝑍)
2114, 20eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
22 iffalse 4465 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2322adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2415, 2uzidd2 42846 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
2524ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → 𝑀𝑍)
2623, 25eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
2721, 26pm2.61dan 809 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
28273adant3 1130 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
29 nfv 1918 . . . . . . . . . . . 12 𝑗𝜑
30 nfv 1918 . . . . . . . . . . . 12 𝑗 𝑖 ∈ ℝ
31 nfra1 3142 . . . . . . . . . . . 12 𝑗𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)
3229, 30, 31nf3an 1905 . . . . . . . . . . 11 𝑗(𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
33 simplr 765 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ∈ ℝ)
344, 27sselid 3915 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
3534adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
36 eluzelre 12522 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℝ)
38 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
3917zred 12355 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℝ)
4039adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ∈ ℝ)
41 ceilge 13493 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ≤ (⌈‘𝑖))
4241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ (⌈‘𝑖))
434, 24sselid 3915 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
4443adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ∈ ℝ)
45 max2 12850 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4644, 40, 45syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4738, 40, 34, 42, 46letrd 11062 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4847adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
49 eluzle 12524 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5049adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5133, 35, 37, 48, 50letrd 11062 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
52513adantl3 1166 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
53 simpl3 1191 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
5415ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℤ)
55 eluzelz 12521 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℤ)
5655adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℤ)
5744adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℝ)
58 max1 12848 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
5943, 39, 58syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6059adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6157, 35, 37, 60, 50letrd 11062 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀𝑗)
622, 54, 56, 61eluzd 42839 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
63623adantl3 1166 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
64 rspa 3130 . . . . . . . . . . . . . 14 ((∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6553, 63, 64syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6652, 65mpd 15 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
6766ex 412 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
6832, 67ralrimi 3139 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥)
69 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)))
7069raleqdv 3339 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥))
7170rspcev 3552 . . . . . . . . . 10 ((if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7228, 68, 71syl2anc 583 . . . . . . . . 9 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
73723exp 1117 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℝ → (∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
7473rexlimdv 3211 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
7574imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7612, 75sylan2 592 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7776ex 412 . . . 4 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
78 rexss 3988 . . . . . . . 8 (𝑍 ⊆ ℝ → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
794, 78ax-mp 5 . . . . . . 7 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
8079biimpi 215 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
81 nfv 1918 . . . . . . . . . . 11 𝑗 𝑘𝑍
82 nfra1 3142 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
8381, 82nfan 1903 . . . . . . . . . 10 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
84 simp1r 1196 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
85 eqid 2738 . . . . . . . . . . . . . 14 (ℤ𝑘) = (ℤ𝑘)
862eluzelz2 42833 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
87863ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
882eluzelz2 42833 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
89883ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
90 simp3 1136 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
9185, 87, 89, 90eluzd 42839 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
92913adant1r 1175 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
93 rspa 3130 . . . . . . . . . . . 12 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
9484, 92, 93syl2anc 583 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
95943exp 1117 . . . . . . . . . 10 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9683, 95ralrimi 3139 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
9796a1i 11 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9897reximdv 3201 . . . . . . 7 (𝜑 → (∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9998imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
10080, 99sylan2 592 . . . . 5 ((𝜑 ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
101100ex 412 . . . 4 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
10277, 101impbid 211 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
103102ralbidv 3120 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1047, 103bitrd 278 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456   class class class wbr 5070  wf 6414  cfv 6418  cr 10801  -∞cmnf 10938  *cxr 10939  cle 10941  cz 12249  cuz 12511  cceil 13439  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fl 13440  df-ceil 13441  df-limsup 15108
This theorem is referenced by:  limsupmnfuz  43158
  Copyright terms: Public domain W3C validator