Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnfuzlem Structured version   Visualization version   GIF version

Theorem limsupmnfuzlem 41439
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnfuzlem.1 (𝜑𝑀 ∈ ℤ)
limsupmnfuzlem.2 𝑍 = (ℤ𝑀)
limsupmnfuzlem.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupmnfuzlem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem limsupmnfuzlem
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2932 . . 3 𝑗𝐹
2 limsupmnfuzlem.2 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 41100 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 3893 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupmnfuzlem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupmnf 41434 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
8 breq1 4933 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 334 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
109ralbidv 3147 . . . . . . . 8 (𝑘 = 𝑖 → (∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
1110cbvrexv 3384 . . . . . . 7 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
1211biimpi 208 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
13 iftrue 4357 . . . . . . . . . . . . . 14 (𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
1413adantl 474 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
15 limsupmnfuzlem.1 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
1615ad2antrr 713 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ∈ ℤ)
17 ceilcl 13030 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℤ)
1817ad2antlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ ℤ)
19 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ≤ (⌈‘𝑖))
202, 16, 18, 19eluzd 41114 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ 𝑍)
2114, 20eqeltrd 2866 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
22 iffalse 4360 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2322adantl 474 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2415, 2uzidd2 41122 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
2524ad2antrr 713 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → 𝑀𝑍)
2623, 25eqeltrd 2866 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
2721, 26pm2.61dan 800 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
28273adant3 1112 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
29 nfv 1873 . . . . . . . . . . . 12 𝑗𝜑
30 nfv 1873 . . . . . . . . . . . 12 𝑗 𝑖 ∈ ℝ
31 nfra1 3169 . . . . . . . . . . . 12 𝑗𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)
3229, 30, 31nf3an 1864 . . . . . . . . . . 11 𝑗(𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
33 simplr 756 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ∈ ℝ)
344, 27sseldi 3858 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
3534adantr 473 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
36 eluzelre 12072 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℝ)
3736adantl 474 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℝ)
38 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
3917zred 11903 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℝ)
4039adantl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ∈ ℝ)
41 ceilge 13032 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ≤ (⌈‘𝑖))
4241adantl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ (⌈‘𝑖))
434, 24sseldi 3858 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
4443adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ∈ ℝ)
45 max2 12400 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4644, 40, 45syl2anc 576 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4738, 40, 34, 42, 46letrd 10599 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4847adantr 473 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
49 eluzle 12074 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5049adantl 474 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5133, 35, 37, 48, 50letrd 10599 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
52513adantl3 1148 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
53 simpl3 1173 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
5415ad2antrr 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℤ)
55 eluzelz 12071 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℤ)
5655adantl 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℤ)
5744adantr 473 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℝ)
58 max1 12398 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
5943, 39, 58syl2an 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6059adantr 473 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6157, 35, 37, 60, 50letrd 10599 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀𝑗)
622, 54, 56, 61eluzd 41114 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
63623adantl3 1148 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
64 rspa 3156 . . . . . . . . . . . . . 14 ((∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6553, 63, 64syl2anc 576 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6652, 65mpd 15 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
6766ex 405 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
6832, 67ralrimi 3166 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥)
69 fveq2 6501 . . . . . . . . . . . 12 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)))
7069raleqdv 3355 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥))
7170rspcev 3535 . . . . . . . . . 10 ((if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7228, 68, 71syl2anc 576 . . . . . . . . 9 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
73723exp 1099 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℝ → (∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
7473rexlimdv 3228 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
7574imp 398 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7612, 75sylan2 583 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7776ex 405 . . . 4 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
78 rexss 3930 . . . . . . . 8 (𝑍 ⊆ ℝ → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
794, 78ax-mp 5 . . . . . . 7 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
8079biimpi 208 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
81 nfv 1873 . . . . . . . . . . 11 𝑗 𝑘𝑍
82 nfra1 3169 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
8381, 82nfan 1862 . . . . . . . . . 10 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
84 simp1r 1178 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
85 eqid 2778 . . . . . . . . . . . . . 14 (ℤ𝑘) = (ℤ𝑘)
862eluzelz2 41107 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
87863ad2ant1 1113 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
882eluzelz2 41107 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
89883ad2ant2 1114 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
90 simp3 1118 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
9185, 87, 89, 90eluzd 41114 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
92913adant1r 1157 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
93 rspa 3156 . . . . . . . . . . . 12 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
9484, 92, 93syl2anc 576 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
95943exp 1099 . . . . . . . . . 10 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9683, 95ralrimi 3166 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
9796a1i 11 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9897reximdv 3218 . . . . . . 7 (𝜑 → (∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9998imp 398 . . . . . 6 ((𝜑 ∧ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
10080, 99sylan2 583 . . . . 5 ((𝜑 ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
101100ex 405 . . . 4 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
10277, 101impbid 204 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
103102ralbidv 3147 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1047, 103bitrd 271 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wrex 3089  wss 3831  ifcif 4351   class class class wbr 4930  wf 6186  cfv 6190  cr 10336  -∞cmnf 10474  *cxr 10475  cle 10477  cz 11796  cuz 12061  cceil 12979  lim supclsp 14691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-ico 12563  df-fl 12980  df-ceil 12981  df-limsup 14692
This theorem is referenced by:  limsupmnfuz  41440
  Copyright terms: Public domain W3C validator