Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnfuzlem Structured version   Visualization version   GIF version

Theorem limsupmnfuzlem 42452
 Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnfuzlem.1 (𝜑𝑀 ∈ ℤ)
limsupmnfuzlem.2 𝑍 = (ℤ𝑀)
limsupmnfuzlem.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupmnfuzlem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem limsupmnfuzlem
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . 3 𝑗𝐹
2 limsupmnfuzlem.2 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 42117 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 3950 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupmnfuzlem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupmnf 42447 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
8 breq1 5036 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 345 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
109ralbidv 3162 . . . . . . . 8 (𝑘 = 𝑖 → (∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
1110cbvrexvw 3397 . . . . . . 7 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
1211biimpi 219 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
13 iftrue 4433 . . . . . . . . . . . . . 14 (𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
1413adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
15 limsupmnfuzlem.1 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
1615ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ∈ ℤ)
17 ceilcl 13224 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℤ)
1817ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ ℤ)
19 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ≤ (⌈‘𝑖))
202, 16, 18, 19eluzd 42130 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ 𝑍)
2114, 20eqeltrd 2890 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
22 iffalse 4436 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2322adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2415, 2uzidd2 42137 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
2524ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → 𝑀𝑍)
2623, 25eqeltrd 2890 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
2721, 26pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
28273adant3 1129 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
29 nfv 1915 . . . . . . . . . . . 12 𝑗𝜑
30 nfv 1915 . . . . . . . . . . . 12 𝑗 𝑖 ∈ ℝ
31 nfra1 3183 . . . . . . . . . . . 12 𝑗𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)
3229, 30, 31nf3an 1902 . . . . . . . . . . 11 𝑗(𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
33 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ∈ ℝ)
344, 27sseldi 3914 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
3534adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
36 eluzelre 12259 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℝ)
3736adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℝ)
38 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
3917zred 12092 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℝ)
4039adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ∈ ℝ)
41 ceilge 13226 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ≤ (⌈‘𝑖))
4241adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ (⌈‘𝑖))
434, 24sseldi 3914 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
4443adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ∈ ℝ)
45 max2 12585 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4644, 40, 45syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4738, 40, 34, 42, 46letrd 10801 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4847adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
49 eluzle 12261 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5049adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5133, 35, 37, 48, 50letrd 10801 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
52513adantl3 1165 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
53 simpl3 1190 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
5415ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℤ)
55 eluzelz 12258 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℤ)
5655adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℤ)
5744adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℝ)
58 max1 12583 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
5943, 39, 58syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6059adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6157, 35, 37, 60, 50letrd 10801 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀𝑗)
622, 54, 56, 61eluzd 42130 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
63623adantl3 1165 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
64 rspa 3171 . . . . . . . . . . . . . 14 ((∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6553, 63, 64syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6652, 65mpd 15 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
6766ex 416 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
6832, 67ralrimi 3180 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥)
69 fveq2 6652 . . . . . . . . . . . 12 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)))
7069raleqdv 3364 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥))
7170rspcev 3571 . . . . . . . . . 10 ((if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7228, 68, 71syl2anc 587 . . . . . . . . 9 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
73723exp 1116 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℝ → (∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
7473rexlimdv 3242 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
7574imp 410 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7612, 75sylan2 595 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7776ex 416 . . . 4 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
78 rexss 3987 . . . . . . . 8 (𝑍 ⊆ ℝ → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
794, 78ax-mp 5 . . . . . . 7 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
8079biimpi 219 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
81 nfv 1915 . . . . . . . . . . 11 𝑗 𝑘𝑍
82 nfra1 3183 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
8381, 82nfan 1900 . . . . . . . . . 10 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
84 simp1r 1195 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
85 eqid 2798 . . . . . . . . . . . . . 14 (ℤ𝑘) = (ℤ𝑘)
862eluzelz2 42124 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
87863ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
882eluzelz2 42124 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
89883ad2ant2 1131 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
90 simp3 1135 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
9185, 87, 89, 90eluzd 42130 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
92913adant1r 1174 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
93 rspa 3171 . . . . . . . . . . . 12 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
9484, 92, 93syl2anc 587 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
95943exp 1116 . . . . . . . . . 10 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9683, 95ralrimi 3180 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
9796a1i 11 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9897reximdv 3232 . . . . . . 7 (𝜑 → (∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9998imp 410 . . . . . 6 ((𝜑 ∧ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
10080, 99sylan2 595 . . . . 5 ((𝜑 ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
101100ex 416 . . . 4 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
10277, 101impbid 215 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
103102ralbidv 3162 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1047, 103bitrd 282 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ⊆ wss 3882  ifcif 4427   class class class wbr 5033  ⟶wf 6325  ‘cfv 6329  ℝcr 10540  -∞cmnf 10677  ℝ*cxr 10678   ≤ cle 10680  ℤcz 11986  ℤ≥cuz 12248  ⌈cceil 13173  lim supclsp 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618  ax-pre-sup 10619 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-inf 8906  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-n0 11901  df-z 11987  df-uz 12249  df-ico 12749  df-fl 13174  df-ceil 13175  df-limsup 14837 This theorem is referenced by:  limsupmnfuz  42453
 Copyright terms: Public domain W3C validator