MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddge22np1 Structured version   Visualization version   GIF version

Theorem oddge22np1 15690
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
oddge22np1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2877 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
2 nn0z 11993 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 485 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
4 eluz2 12237 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)))
5 2re 11699 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 2 ∈ ℝ)
7 1red 10631 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 1 ∈ ℝ)
8 2nn0 11902 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
10 id 22 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
119, 10nn0mulcld 11948 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
1211nn0red 11944 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℝ)
136, 7, 12lesubaddd 11226 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1)))
14 2m1e1 11751 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
1514breq1i 5037 . . . . . . . . . . . . . . . 16 ((2 − 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛))
16 nn0re 11894 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
17 2rp 12382 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℝ+)
197, 16, 18ledivmuld 12472 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
20 halfgt0 11841 . . . . . . . . . . . . . . . . . 18 0 < (1 / 2)
21 0red 10633 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → 0 ∈ ℝ)
22 halfre 11839 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1 / 2) ∈ ℝ)
24 ltletr 10721 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2521, 23, 16, 24syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2620, 25mpani 695 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 → 0 < 𝑛))
2719, 26sylbird 263 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (1 ≤ (2 · 𝑛) → 0 < 𝑛))
2815, 27syl5bi 245 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛))
2913, 28sylbird 263 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛))
3029com12 32 . . . . . . . . . . . . 13 (2 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
31303ad2ant3 1132 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
324, 31sylbi 220 . . . . . . . . . . 11 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
3332imp 410 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 0 < 𝑛)
34 elnnz 11979 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
353, 33, 34sylanbrc 586 . . . . . . . . 9 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ)
3635ex 416 . . . . . . . 8 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ))
371, 36syl6bir 257 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ)))
3837com13 88 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑁 ∈ (ℤ‘2) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ)))
3938impcom 411 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ))
4039pm4.71rd 566 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4140bicomd 226 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁))
4241rexbidva 3255 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
43 nnssnn0 11888 . . 3 ℕ ⊆ ℕ0
44 rexss 3986 . . 3 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4543, 44mp1i 13 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
46 eluzge2nn0 12275 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
47 oddnn02np1 15689 . . 3 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4846, 47syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4942, 45, 483bitr4rd 315 1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-dvds 15600
This theorem is referenced by:  lighneallem3  44125
  Copyright terms: Public domain W3C validator