MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddge22np1 Structured version   Visualization version   GIF version

Theorem oddge22np1 15750
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
oddge22np1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2839 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
2 nn0z 12044 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 485 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
4 eluz2 12288 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)))
5 2re 11748 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 2 ∈ ℝ)
7 1red 10680 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 1 ∈ ℝ)
8 2nn0 11951 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
10 id 22 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
119, 10nn0mulcld 11999 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
1211nn0red 11995 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℝ)
136, 7, 12lesubaddd 11275 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1)))
14 2m1e1 11800 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
1514breq1i 5039 . . . . . . . . . . . . . . . 16 ((2 − 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛))
16 nn0re 11943 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
17 2rp 12435 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℝ+)
197, 16, 18ledivmuld 12525 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
20 halfgt0 11890 . . . . . . . . . . . . . . . . . 18 0 < (1 / 2)
21 0red 10682 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → 0 ∈ ℝ)
22 halfre 11888 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1 / 2) ∈ ℝ)
24 ltletr 10770 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2521, 23, 16, 24syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2620, 25mpani 695 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 → 0 < 𝑛))
2719, 26sylbird 263 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (1 ≤ (2 · 𝑛) → 0 < 𝑛))
2815, 27syl5bi 245 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛))
2913, 28sylbird 263 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛))
3029com12 32 . . . . . . . . . . . . 13 (2 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
31303ad2ant3 1132 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
324, 31sylbi 220 . . . . . . . . . . 11 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
3332imp 410 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 0 < 𝑛)
34 elnnz 12030 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
353, 33, 34sylanbrc 586 . . . . . . . . 9 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ)
3635ex 416 . . . . . . . 8 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ))
371, 36syl6bir 257 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ)))
3837com13 88 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑁 ∈ (ℤ‘2) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ)))
3938impcom 411 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ))
4039pm4.71rd 566 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4140bicomd 226 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁))
4241rexbidva 3220 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
43 nnssnn0 11937 . . 3 ℕ ⊆ ℕ0
44 rexss 3963 . . 3 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4543, 44mp1i 13 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
46 eluzge2nn0 12327 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
47 oddnn02np1 15749 . . 3 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4846, 47syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4942, 45, 483bitr4rd 315 1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  wss 3858   class class class wbr 5032  cfv 6335  (class class class)co 7150  cr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580   < clt 10713  cle 10714  cmin 10908   / cdiv 11335  cn 11674  2c2 11729  0cn0 11934  cz 12020  cuz 12282  +crp 12430  cdvds 15655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fl 13211  df-dvds 15656
This theorem is referenced by:  lighneallem3  44492
  Copyright terms: Public domain W3C validator