Proof of Theorem oddge22np1
Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈
(ℤ≥‘2) ↔ 𝑁 ∈
(ℤ≥‘2))) |
2 | | nn0z 12273 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
3 | 2 | adantl 481 |
. . . . . . . . . 10
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℤ) |
4 | | eluz2 12517 |
. . . . . . . . . . . 12
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ((2 ·
𝑛) + 1) ∈ ℤ
∧ 2 ≤ ((2 · 𝑛) + 1))) |
5 | | 2re 11977 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
6 | 5 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℝ) |
7 | | 1red 10907 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ 1 ∈ ℝ) |
8 | | 2nn0 12180 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
9 | 8 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
10 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
11 | 9, 10 | nn0mulcld 12228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℕ0) |
12 | 11 | nn0red 12224 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℝ) |
13 | 6, 7, 12 | lesubaddd 11502 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1))) |
14 | | 2m1e1 12029 |
. . . . . . . . . . . . . . . . 17
⊢ (2
− 1) = 1 |
15 | 14 | breq1i 5077 |
. . . . . . . . . . . . . . . 16
⊢ ((2
− 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛)) |
16 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
17 | | 2rp 12664 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ+ |
18 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℝ+) |
19 | 7, 16, 18 | ledivmuld 12754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ ((1 / 2) ≤ 𝑛
↔ 1 ≤ (2 · 𝑛))) |
20 | | halfgt0 12119 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 < (1
/ 2) |
21 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ 0 ∈ ℝ) |
22 | | halfre 12117 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 2)
∈ ℝ |
23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (1 / 2) ∈ ℝ) |
24 | | ltletr 10997 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2)
∧ (1 / 2) ≤ 𝑛)
→ 0 < 𝑛)) |
25 | 21, 23, 16, 24 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛)) |
26 | 20, 25 | mpani 692 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ ((1 / 2) ≤ 𝑛
→ 0 < 𝑛)) |
27 | 19, 26 | sylbird 259 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (1 ≤ (2 · 𝑛) → 0 < 𝑛)) |
28 | 15, 27 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛)) |
29 | 13, 28 | sylbird 259 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛)) |
30 | 29 | com12 32 |
. . . . . . . . . . . . 13
⊢ (2 ≤
((2 · 𝑛) + 1) →
(𝑛 ∈
ℕ0 → 0 < 𝑛)) |
31 | 30 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2
· 𝑛) + 1)) →
(𝑛 ∈
ℕ0 → 0 < 𝑛)) |
32 | 4, 31 | sylbi 216 |
. . . . . . . . . . 11
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) → (𝑛 ∈ ℕ0 → 0 <
𝑛)) |
33 | 32 | imp 406 |
. . . . . . . . . 10
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 0 <
𝑛) |
34 | | elnnz 12259 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 <
𝑛)) |
35 | 3, 33, 34 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ) |
36 | 35 | ex 412 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) → (𝑛 ∈ ℕ0 → 𝑛 ∈
ℕ)) |
37 | 1, 36 | syl6bir 253 |
. . . . . . 7
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ≥‘2)
→ (𝑛 ∈
ℕ0 → 𝑛 ∈ ℕ))) |
38 | 37 | com13 88 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘2) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ))) |
39 | 38 | impcom 407 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → (((2
· 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ)) |
40 | 39 | pm4.71rd 562 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → (((2
· 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁))) |
41 | 40 | bicomd 222 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
42 | 41 | rexbidva 3224 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2
· 𝑛) + 1) = 𝑁)) |
43 | | nnssnn0 12166 |
. . 3
⊢ ℕ
⊆ ℕ0 |
44 | | rexss 3988 |
. . 3
⊢ (ℕ
⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁))) |
45 | 43, 44 | mp1i 13 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁))) |
46 | | eluzge2nn0 12556 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈
ℕ0) |
47 | | oddnn02np1 15985 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (¬ 2 ∥ 𝑁
↔ ∃𝑛 ∈
ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
48 | 46, 47 | syl 17 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 ·
𝑛) + 1) = 𝑁)) |
49 | 42, 45, 48 | 3bitr4rd 311 |
1
⊢ (𝑁 ∈
(ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) |