| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evennn2n | Structured version Visualization version GIF version | ||
| Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| evennn2n | ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . . . . . 8 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 2 | simpr 484 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 3 | 2re 12199 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ) |
| 5 | zre 12472 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
| 6 | 5 | adantl 481 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
| 7 | 0le2 12227 | . . . . . . . . . . . 12 ⊢ 0 ≤ 2 | |
| 8 | 7 | a1i 11 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 ≤ 2) |
| 9 | nngt0 12156 | . . . . . . . . . . . 12 ⊢ ((2 · 𝑛) ∈ ℕ → 0 < (2 · 𝑛)) | |
| 10 | 9 | adantr 480 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < (2 · 𝑛)) |
| 11 | prodgt0 11968 | . . . . . . . . . . 11 ⊢ (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 ≤ 2 ∧ 0 < (2 · 𝑛))) → 0 < 𝑛) | |
| 12 | 4, 6, 8, 10, 11 | syl22anc 838 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < 𝑛) |
| 13 | elnnz 12478 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 14 | 2, 12, 13 | sylanbrc 583 | . . . . . . . . 9 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ) |
| 15 | 14 | ex 412 | . . . . . . . 8 ⊢ ((2 · 𝑛) ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ)) |
| 16 | 1, 15 | biimtrrdi 254 | . . . . . . 7 ⊢ ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ))) |
| 17 | 16 | com13 88 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ))) |
| 18 | 17 | impcom 407 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ)) |
| 19 | 18 | pm4.71rd 562 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) |
| 20 | 19 | bicomd 223 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁)) |
| 21 | 20 | rexbidva 3154 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 22 | nnssz 12490 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 23 | rexss 4010 | . . 3 ⊢ (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) | |
| 24 | 22, 23 | mp1i 13 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) |
| 25 | even2n 16253 | . . 3 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | |
| 26 | 25 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 27 | 21, 24, 26 | 3bitr4rd 312 | 1 ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 · cmul 11011 < clt 11146 ≤ cle 11147 ℕcn 12125 2c2 12180 ℤcz 12468 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-dvds 16164 |
| This theorem is referenced by: lighneallem2 47643 |
| Copyright terms: Public domain | W3C validator |