MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evennn2n Structured version   Visualization version   GIF version

Theorem evennn2n 15695
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn2n (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn2n
StepHypRef Expression
1 eleq1 2905 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ ↔ 𝑁 ∈ ℕ))
2 simpr 485 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2re 11705 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ)
5 zre 11979 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 482 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 0le2 11733 . . . . . . . . . . . 12 0 ≤ 2
87a1i 11 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 ≤ 2)
9 nngt0 11662 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ → 0 < (2 · 𝑛))
109adantr 481 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < (2 · 𝑛))
11 prodgt0 11481 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 ≤ 2 ∧ 0 < (2 · 𝑛))) → 0 < 𝑛)
124, 6, 8, 10, 11syl22anc 836 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < 𝑛)
13 elnnz 11985 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
142, 12, 13sylanbrc 583 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ)
1514ex 413 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ))
161, 15syl6bir 255 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ)))
1716com13 88 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ)))
1817impcom 408 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ))
1918pm4.71rd 563 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2019bicomd 224 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
2120rexbidva 3301 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
22 nnssz 11996 . . 3 ℕ ⊆ ℤ
23 rexss 4042 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2422, 23mp1i 13 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
25 even2n 15686 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2625a1i 11 . 2 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2721, 24, 263bitr4rd 313 1 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  wss 3940   class class class wbr 5063  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670  cn 11632  2c2 11686  cz 11975  cdvds 15602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-dvds 15603
This theorem is referenced by:  lighneallem2  43622
  Copyright terms: Public domain W3C validator