MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evennn2n Structured version   Visualization version   GIF version

Theorem evennn2n 16385
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn2n (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn2n
StepHypRef Expression
1 eleq1 2827 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ ↔ 𝑁 ∈ ℕ))
2 simpr 484 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2re 12338 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ)
5 zre 12615 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 481 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 0le2 12366 . . . . . . . . . . . 12 0 ≤ 2
87a1i 11 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 ≤ 2)
9 nngt0 12295 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ → 0 < (2 · 𝑛))
109adantr 480 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < (2 · 𝑛))
11 prodgt0 12112 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 ≤ 2 ∧ 0 < (2 · 𝑛))) → 0 < 𝑛)
124, 6, 8, 10, 11syl22anc 839 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < 𝑛)
13 elnnz 12621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
142, 12, 13sylanbrc 583 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ)
1514ex 412 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ))
161, 15biimtrrdi 254 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ)))
1716com13 88 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ)))
1817impcom 407 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ))
1918pm4.71rd 562 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2019bicomd 223 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
2120rexbidva 3175 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
22 nnssz 12633 . . 3 ℕ ⊆ ℤ
23 rexss 4071 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2422, 23mp1i 13 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
25 even2n 16376 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2625a1i 11 . 2 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2721, 24, 263bitr4rd 312 1 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158   < clt 11293  cle 11294  cn 12264  2c2 12319  cz 12611  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-dvds 16288
This theorem is referenced by:  lighneallem2  47531
  Copyright terms: Public domain W3C validator