![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evennn02n | Structured version Visualization version GIF version |
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) (Proof shortened by AV, 10-Jul-2022.) |
Ref | Expression |
---|---|
evennn02n | ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . . . . . . . 8 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | simpr 484 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
3 | 2rp 13012 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ+ | |
4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+) |
5 | zre 12593 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
6 | 5 | adantl 481 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
7 | nn0ge0 12528 | . . . . . . . . . . . 12 ⊢ ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛)) | |
8 | 7 | adantr 480 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛)) |
9 | 4, 6, 8 | prodge0rd 13114 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ 𝑛) |
10 | elnn0z 12602 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
11 | 2, 9, 10 | sylanbrc 582 | . . . . . . . . 9 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0) |
12 | 11 | ex 412 | . . . . . . . 8 ⊢ ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
13 | 1, 12 | syl6bir 254 | . . . . . . 7 ⊢ ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
14 | 13 | com13 88 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0))) |
15 | 14 | impcom 407 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0)) |
16 | 15 | pm4.71rd 562 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
17 | 16 | bicomd 222 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁)) |
18 | 17 | rexbidva 3173 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
19 | nn0ssz 12612 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
20 | rexss 4053 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) | |
21 | 19, 20 | mp1i 13 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
22 | even2n 16319 | . . 3 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | |
23 | 22 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
24 | 18, 21, 23 | 3bitr4rd 312 | 1 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ⊆ wss 3947 class class class wbr 5148 (class class class)co 7420 ℝcr 11138 0cc0 11139 · cmul 11144 ≤ cle 11280 2c2 12298 ℕ0cn0 12503 ℤcz 12589 ℝ+crp 13007 ∥ cdvds 16231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-rp 13008 df-dvds 16232 |
This theorem is referenced by: wrdt2ind 32687 |
Copyright terms: Public domain | W3C validator |