MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evennn02n Structured version   Visualization version   GIF version

Theorem evennn02n 16261
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
evennn02n (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn02n
StepHypRef Expression
1 eleq1 2819 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0𝑁 ∈ ℕ0))
2 simpr 484 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2rp 12895 . . . . . . . . . . . 12 2 ∈ ℝ+
43a1i 11 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 2 ∈ ℝ+)
5 zre 12472 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 481 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 nn0ge0 12406 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛))
87adantr 480 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛))
94, 6, 8prodge0rd 12999 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ 𝑛)
10 elnn0z 12481 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))
112, 9, 10sylanbrc 583 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0)
1211ex 412 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))
131, 12biimtrrdi 254 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)))
1413com13 88 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0)))
1514impcom 407 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0))
1615pm4.71rd 562 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
1716bicomd 223 . . 3 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
1817rexbidva 3154 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
19 nn0ssz 12491 . . 3 0 ⊆ ℤ
20 rexss 4005 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
2119, 20mp1i 13 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
22 even2n 16253 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2322a1i 11 . 2 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2418, 21, 233bitr4rd 312 1 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3897   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006   · cmul 11011  cle 11147  2c2 12180  0cn0 12381  cz 12468  +crp 12890  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-rp 12891  df-dvds 16164
This theorem is referenced by:  expevenpos  32829  wrdt2ind  32934
  Copyright terms: Public domain W3C validator