![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oddnn02np1 | Structured version Visualization version GIF version |
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
oddnn02np1 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | elnn0z 12652 | . . . . . . . . 9 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 ↔ (((2 · 𝑛) + 1) ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1))) | |
3 | 2tnp1ge0ge0 13880 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) ↔ 0 ≤ 𝑛)) | |
4 | 3 | biimpd 229 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) → 0 ≤ 𝑛)) |
5 | 4 | imdistani 568 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) |
6 | 5 | expcom 413 | . . . . . . . . . 10 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))) |
7 | elnn0z 12652 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
8 | 6, 7 | imbitrrdi 252 | . . . . . . . . 9 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
9 | 2, 8 | simplbiim 504 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
10 | 1, 9 | biimtrrdi 254 | . . . . . . 7 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
11 | 10 | com13 88 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0))) |
12 | 11 | impcom 407 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0)) |
13 | 12 | pm4.71rd 562 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
14 | 13 | bicomd 223 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
15 | 14 | rexbidva 3183 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
16 | nn0ssz 12662 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
17 | rexss 4084 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) | |
18 | 16, 17 | mp1i 13 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
19 | nn0z 12664 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | odd2np1 16389 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
22 | 15, 18, 21 | 3bitr4rd 312 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-dvds 16303 |
This theorem is referenced by: oddge22np1 16397 2lgslem1c 27455 |
Copyright terms: Public domain | W3C validator |