| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lnocoi.w | . . . 4
⊢ 𝑊 ∈ NrmCVec | 
| 2 |  | lnocoi.x | . . . 4
⊢ 𝑋 ∈ NrmCVec | 
| 3 |  | lnocoi.t | . . . 4
⊢ 𝑇 ∈ 𝑀 | 
| 4 |  | eqid 2737 | . . . . 5
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) | 
| 5 |  | eqid 2737 | . . . . 5
⊢
(BaseSet‘𝑋) =
(BaseSet‘𝑋) | 
| 6 |  | lnocoi.m | . . . . 5
⊢ 𝑀 = (𝑊 LnOp 𝑋) | 
| 7 | 4, 5, 6 | lnof 30774 | . . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) → 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋)) | 
| 8 | 1, 2, 3, 7 | mp3an 1463 | . . 3
⊢ 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋) | 
| 9 |  | lnocoi.u | . . . 4
⊢ 𝑈 ∈ NrmCVec | 
| 10 |  | lnocoi.s | . . . 4
⊢ 𝑆 ∈ 𝐿 | 
| 11 |  | eqid 2737 | . . . . 5
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) | 
| 12 |  | lnocoi.l | . . . . 5
⊢ 𝐿 = (𝑈 LnOp 𝑊) | 
| 13 | 11, 4, 12 | lnof 30774 | . . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) → 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) | 
| 14 | 9, 1, 10, 13 | mp3an 1463 | . . 3
⊢ 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) | 
| 15 |  | fco 6760 | . . 3
⊢ ((𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋) ∧ 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋)) | 
| 16 | 8, 14, 15 | mp2an 692 | . 2
⊢ (𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) | 
| 17 |  | eqid 2737 | . . . . . . . 8
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) | 
| 18 | 11, 17 | nvscl 30645 | . . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑈)𝑦) ∈ (BaseSet‘𝑈)) | 
| 19 | 9, 18 | mp3an1 1450 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑈)𝑦) ∈ (BaseSet‘𝑈)) | 
| 20 |  | eqid 2737 | . . . . . . . 8
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | 
| 21 | 11, 20 | nvgcl 30639 | . . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥(
·𝑠OLD ‘𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) | 
| 22 | 9, 21 | mp3an1 1450 | . . . . . 6
⊢ (((𝑥(
·𝑠OLD ‘𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) | 
| 23 | 19, 22 | stoic3 1776 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) | 
| 24 |  | fvco3 7008 | . . . . 5
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) | 
| 25 | 14, 23, 24 | sylancr 587 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) | 
| 26 |  | id 22 | . . . . . 6
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) | 
| 27 | 14 | ffvelcdmi 7103 | . . . . . 6
⊢ (𝑦 ∈ (BaseSet‘𝑈) → (𝑆‘𝑦) ∈ (BaseSet‘𝑊)) | 
| 28 | 14 | ffvelcdmi 7103 | . . . . . 6
⊢ (𝑧 ∈ (BaseSet‘𝑈) → (𝑆‘𝑧) ∈ (BaseSet‘𝑊)) | 
| 29 | 1, 2, 3 | 3pm3.2i 1340 | . . . . . . 7
⊢ (𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) | 
| 30 |  | eqid 2737 | . . . . . . . 8
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | 
| 31 |  | eqid 2737 | . . . . . . . 8
⊢ (
+𝑣 ‘𝑋) = ( +𝑣 ‘𝑋) | 
| 32 |  | eqid 2737 | . . . . . . . 8
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) | 
| 33 |  | eqid 2737 | . . . . . . . 8
⊢ (
·𝑠OLD ‘𝑋) = ( ·𝑠OLD
‘𝑋) | 
| 34 | 4, 5, 30, 31, 32, 33, 6 | lnolin 30773 | . . . . . . 7
⊢ (((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) ∧ (𝑥 ∈ ℂ ∧ (𝑆‘𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆‘𝑧) ∈ (BaseSet‘𝑊))) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) | 
| 35 | 29, 34 | mpan 690 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ (𝑆‘𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆‘𝑧) ∈ (BaseSet‘𝑊)) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) | 
| 36 | 26, 27, 28, 35 | syl3an 1161 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) | 
| 37 | 9, 1, 10 | 3pm3.2i 1340 | . . . . . . 7
⊢ (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) | 
| 38 | 11, 4, 20, 30, 17, 32, 12 | lnolin 30773 | . . . . . . 7
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) | 
| 39 | 37, 38 | mpan 690 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) | 
| 40 | 39 | fveq2d 6910 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧))) = (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧)))) | 
| 41 |  | simp2 1138 | . . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ (BaseSet‘𝑈)) | 
| 42 |  | fvco3 7008 | . . . . . . . 8
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) | 
| 43 | 14, 41, 42 | sylancr 587 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) | 
| 44 | 43 | oveq2d 7447 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦)) = (𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))) | 
| 45 |  | simp3 1139 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑧 ∈ (BaseSet‘𝑈)) | 
| 46 |  | fvco3 7008 | . . . . . . 7
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑧) = (𝑇‘(𝑆‘𝑧))) | 
| 47 | 14, 45, 46 | sylancr 587 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑧) = (𝑇‘(𝑆‘𝑧))) | 
| 48 | 44, 47 | oveq12d 7449 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) | 
| 49 | 36, 40, 48 | 3eqtr4rd 2788 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) | 
| 50 | 25, 49 | eqtr4d 2780 | . . 3
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧))) | 
| 51 | 50 | rgen3 3204 | . 2
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
(BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) | 
| 52 |  | lnocoi.n | . . . 4
⊢ 𝑁 = (𝑈 LnOp 𝑋) | 
| 53 | 11, 5, 20, 31, 17, 33, 52 | islno 30772 | . . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec) → ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧))))) | 
| 54 | 9, 2, 53 | mp2an 692 | . 2
⊢ ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)))) | 
| 55 | 16, 51, 54 | mpbir2an 711 | 1
⊢ (𝑇 ∘ 𝑆) ∈ 𝑁 |