MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnocoi Structured version   Visualization version   GIF version

Theorem lnocoi 30693
Description: The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnocoi.l 𝐿 = (𝑈 LnOp 𝑊)
lnocoi.m 𝑀 = (𝑊 LnOp 𝑋)
lnocoi.n 𝑁 = (𝑈 LnOp 𝑋)
lnocoi.u 𝑈 ∈ NrmCVec
lnocoi.w 𝑊 ∈ NrmCVec
lnocoi.x 𝑋 ∈ NrmCVec
lnocoi.s 𝑆𝐿
lnocoi.t 𝑇𝑀
Assertion
Ref Expression
lnocoi (𝑇𝑆) ∈ 𝑁

Proof of Theorem lnocoi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnocoi.w . . . 4 𝑊 ∈ NrmCVec
2 lnocoi.x . . . 4 𝑋 ∈ NrmCVec
3 lnocoi.t . . . 4 𝑇𝑀
4 eqid 2730 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
5 eqid 2730 . . . . 5 (BaseSet‘𝑋) = (BaseSet‘𝑋)
6 lnocoi.m . . . . 5 𝑀 = (𝑊 LnOp 𝑋)
74, 5, 6lnof 30691 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇𝑀) → 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋))
81, 2, 3, 7mp3an 1463 . . 3 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋)
9 lnocoi.u . . . 4 𝑈 ∈ NrmCVec
10 lnocoi.s . . . 4 𝑆𝐿
11 eqid 2730 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
12 lnocoi.l . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
1311, 4, 12lnof 30691 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆𝐿) → 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
149, 1, 10, 13mp3an 1463 . . 3 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
15 fco 6715 . . 3 ((𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋) ∧ 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑇𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋))
168, 14, 15mp2an 692 . 2 (𝑇𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋)
17 eqid 2730 . . . . . . . 8 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
1811, 17nvscl 30562 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
199, 18mp3an1 1450 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
20 eqid 2730 . . . . . . . 8 ( +𝑣𝑈) = ( +𝑣𝑈)
2111, 20nvgcl 30556 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
229, 21mp3an1 1450 . . . . . 6 (((𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
2319, 22stoic3 1776 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
24 fvco3 6963 . . . . 5 ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧))))
2514, 23, 24sylancr 587 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧))))
26 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
2714ffvelcdmi 7058 . . . . . 6 (𝑦 ∈ (BaseSet‘𝑈) → (𝑆𝑦) ∈ (BaseSet‘𝑊))
2814ffvelcdmi 7058 . . . . . 6 (𝑧 ∈ (BaseSet‘𝑈) → (𝑆𝑧) ∈ (BaseSet‘𝑊))
291, 2, 33pm3.2i 1340 . . . . . . 7 (𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇𝑀)
30 eqid 2730 . . . . . . . 8 ( +𝑣𝑊) = ( +𝑣𝑊)
31 eqid 2730 . . . . . . . 8 ( +𝑣𝑋) = ( +𝑣𝑋)
32 eqid 2730 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
33 eqid 2730 . . . . . . . 8 ( ·𝑠OLD𝑋) = ( ·𝑠OLD𝑋)
344, 5, 30, 31, 32, 33, 6lnolin 30690 . . . . . . 7 (((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇𝑀) ∧ (𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆𝑧) ∈ (BaseSet‘𝑊))) → (𝑇‘((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧))) = ((𝑥( ·𝑠OLD𝑋)(𝑇‘(𝑆𝑦)))( +𝑣𝑋)(𝑇‘(𝑆𝑧))))
3529, 34mpan 690 . . . . . 6 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆𝑧) ∈ (BaseSet‘𝑊)) → (𝑇‘((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧))) = ((𝑥( ·𝑠OLD𝑋)(𝑇‘(𝑆𝑦)))( +𝑣𝑋)(𝑇‘(𝑆𝑧))))
3626, 27, 28, 35syl3an 1160 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧))) = ((𝑥( ·𝑠OLD𝑋)(𝑇‘(𝑆𝑦)))( +𝑣𝑋)(𝑇‘(𝑆𝑧))))
379, 1, 103pm3.2i 1340 . . . . . . 7 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆𝐿)
3811, 4, 20, 30, 17, 32, 12lnolin 30690 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆𝐿) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧)))
3937, 38mpan 690 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧)))
4039fveq2d 6865 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘(𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧))) = (𝑇‘((𝑥( ·𝑠OLD𝑊)(𝑆𝑦))( +𝑣𝑊)(𝑆𝑧))))
41 simp2 1137 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ (BaseSet‘𝑈))
42 fvco3 6963 . . . . . . . 8 ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘𝑦) = (𝑇‘(𝑆𝑦)))
4314, 41, 42sylancr 587 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘𝑦) = (𝑇‘(𝑆𝑦)))
4443oveq2d 7406 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦)) = (𝑥( ·𝑠OLD𝑋)(𝑇‘(𝑆𝑦))))
45 simp3 1138 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑧 ∈ (BaseSet‘𝑈))
46 fvco3 6963 . . . . . . 7 ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘𝑧) = (𝑇‘(𝑆𝑧)))
4714, 45, 46sylancr 587 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘𝑧) = (𝑇‘(𝑆𝑧)))
4844, 47oveq12d 7408 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧)) = ((𝑥( ·𝑠OLD𝑋)(𝑇‘(𝑆𝑦)))( +𝑣𝑋)(𝑇‘(𝑆𝑧))))
4936, 40, 483eqtr4rd 2776 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧))))
5025, 49eqtr4d 2768 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧)))
5150rgen3 3183 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧))
52 lnocoi.n . . . 4 𝑁 = (𝑈 LnOp 𝑋)
5311, 5, 20, 31, 17, 33, 52islno 30689 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec) → ((𝑇𝑆) ∈ 𝑁 ↔ ((𝑇𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧)))))
549, 2, 53mp2an 692 . 2 ((𝑇𝑆) ∈ 𝑁 ↔ ((𝑇𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇𝑆)‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑋)((𝑇𝑆)‘𝑦))( +𝑣𝑋)((𝑇𝑆)‘𝑧))))
5516, 51, 54mpbir2an 711 1 (𝑇𝑆) ∈ 𝑁
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523   LnOp clno 30676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-grpo 30429  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-lno 30680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator