MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnocoi Structured version   Visualization version   GIF version

Theorem lnocoi 30515
Description: The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnocoi.l 𝐿 = (π‘ˆ LnOp π‘Š)
lnocoi.m 𝑀 = (π‘Š LnOp 𝑋)
lnocoi.n 𝑁 = (π‘ˆ LnOp 𝑋)
lnocoi.u π‘ˆ ∈ NrmCVec
lnocoi.w π‘Š ∈ NrmCVec
lnocoi.x 𝑋 ∈ NrmCVec
lnocoi.s 𝑆 ∈ 𝐿
lnocoi.t 𝑇 ∈ 𝑀
Assertion
Ref Expression
lnocoi (𝑇 ∘ 𝑆) ∈ 𝑁

Proof of Theorem lnocoi
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnocoi.w . . . 4 π‘Š ∈ NrmCVec
2 lnocoi.x . . . 4 𝑋 ∈ NrmCVec
3 lnocoi.t . . . 4 𝑇 ∈ 𝑀
4 eqid 2726 . . . . 5 (BaseSetβ€˜π‘Š) = (BaseSetβ€˜π‘Š)
5 eqid 2726 . . . . 5 (BaseSetβ€˜π‘‹) = (BaseSetβ€˜π‘‹)
6 lnocoi.m . . . . 5 𝑀 = (π‘Š LnOp 𝑋)
74, 5, 6lnof 30513 . . . 4 ((π‘Š ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) β†’ 𝑇:(BaseSetβ€˜π‘Š)⟢(BaseSetβ€˜π‘‹))
81, 2, 3, 7mp3an 1457 . . 3 𝑇:(BaseSetβ€˜π‘Š)⟢(BaseSetβ€˜π‘‹)
9 lnocoi.u . . . 4 π‘ˆ ∈ NrmCVec
10 lnocoi.s . . . 4 𝑆 ∈ 𝐿
11 eqid 2726 . . . . 5 (BaseSetβ€˜π‘ˆ) = (BaseSetβ€˜π‘ˆ)
12 lnocoi.l . . . . 5 𝐿 = (π‘ˆ LnOp π‘Š)
1311, 4, 12lnof 30513 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) β†’ 𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š))
149, 1, 10, 13mp3an 1457 . . 3 𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š)
15 fco 6734 . . 3 ((𝑇:(BaseSetβ€˜π‘Š)⟢(BaseSetβ€˜π‘‹) ∧ 𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š)) β†’ (𝑇 ∘ 𝑆):(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘‹))
168, 14, 15mp2an 689 . 2 (𝑇 ∘ 𝑆):(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘‹)
17 eqid 2726 . . . . . . . 8 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
1811, 17nvscl 30384 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦) ∈ (BaseSetβ€˜π‘ˆ))
199, 18mp3an1 1444 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦) ∈ (BaseSetβ€˜π‘ˆ))
20 eqid 2726 . . . . . . . 8 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
2111, 20nvgcl 30378 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ (π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦) ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧) ∈ (BaseSetβ€˜π‘ˆ))
229, 21mp3an1 1444 . . . . . 6 (((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦) ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧) ∈ (BaseSetβ€˜π‘ˆ))
2319, 22stoic3 1770 . . . . 5 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧) ∈ (BaseSetβ€˜π‘ˆ))
24 fvco3 6983 . . . . 5 ((𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š) ∧ ((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧) ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = (π‘‡β€˜(π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧))))
2514, 23, 24sylancr 586 . . . 4 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = (π‘‡β€˜(π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧))))
26 id 22 . . . . . 6 (π‘₯ ∈ β„‚ β†’ π‘₯ ∈ β„‚)
2714ffvelcdmi 7078 . . . . . 6 (𝑦 ∈ (BaseSetβ€˜π‘ˆ) β†’ (π‘†β€˜π‘¦) ∈ (BaseSetβ€˜π‘Š))
2814ffvelcdmi 7078 . . . . . 6 (𝑧 ∈ (BaseSetβ€˜π‘ˆ) β†’ (π‘†β€˜π‘§) ∈ (BaseSetβ€˜π‘Š))
291, 2, 33pm3.2i 1336 . . . . . . 7 (π‘Š ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀)
30 eqid 2726 . . . . . . . 8 ( +𝑣 β€˜π‘Š) = ( +𝑣 β€˜π‘Š)
31 eqid 2726 . . . . . . . 8 ( +𝑣 β€˜π‘‹) = ( +𝑣 β€˜π‘‹)
32 eqid 2726 . . . . . . . 8 ( ·𝑠OLD β€˜π‘Š) = ( ·𝑠OLD β€˜π‘Š)
33 eqid 2726 . . . . . . . 8 ( ·𝑠OLD β€˜π‘‹) = ( ·𝑠OLD β€˜π‘‹)
344, 5, 30, 31, 32, 33, 6lnolin 30512 . . . . . . 7 (((π‘Š ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) ∧ (π‘₯ ∈ β„‚ ∧ (π‘†β€˜π‘¦) ∈ (BaseSetβ€˜π‘Š) ∧ (π‘†β€˜π‘§) ∈ (BaseSetβ€˜π‘Š))) β†’ (π‘‡β€˜((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§))) = ((π‘₯( ·𝑠OLD β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘¦)))( +𝑣 β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘§))))
3529, 34mpan 687 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ (π‘†β€˜π‘¦) ∈ (BaseSetβ€˜π‘Š) ∧ (π‘†β€˜π‘§) ∈ (BaseSetβ€˜π‘Š)) β†’ (π‘‡β€˜((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§))) = ((π‘₯( ·𝑠OLD β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘¦)))( +𝑣 β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘§))))
3626, 27, 28, 35syl3an 1157 . . . . 5 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘‡β€˜((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§))) = ((π‘₯( ·𝑠OLD β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘¦)))( +𝑣 β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘§))))
379, 1, 103pm3.2i 1336 . . . . . . 7 (π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑆 ∈ 𝐿)
3811, 4, 20, 30, 17, 32, 12lnolin 30512 . . . . . . 7 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) ∧ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ))) β†’ (π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§)))
3937, 38mpan 687 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§)))
4039fveq2d 6888 . . . . 5 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘‡β€˜(π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧))) = (π‘‡β€˜((π‘₯( ·𝑠OLD β€˜π‘Š)(π‘†β€˜π‘¦))( +𝑣 β€˜π‘Š)(π‘†β€˜π‘§))))
41 simp2 1134 . . . . . . . 8 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ 𝑦 ∈ (BaseSetβ€˜π‘ˆ))
42 fvco3 6983 . . . . . . . 8 ((𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š) ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜π‘¦) = (π‘‡β€˜(π‘†β€˜π‘¦)))
4314, 41, 42sylancr 586 . . . . . . 7 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜π‘¦) = (π‘‡β€˜(π‘†β€˜π‘¦)))
4443oveq2d 7420 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ (π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦)) = (π‘₯( ·𝑠OLD β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘¦))))
45 simp3 1135 . . . . . . 7 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ 𝑧 ∈ (BaseSetβ€˜π‘ˆ))
46 fvco3 6983 . . . . . . 7 ((𝑆:(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘Š) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜π‘§) = (π‘‡β€˜(π‘†β€˜π‘§)))
4714, 45, 46sylancr 586 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜π‘§) = (π‘‡β€˜(π‘†β€˜π‘§)))
4844, 47oveq12d 7422 . . . . 5 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§)) = ((π‘₯( ·𝑠OLD β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘¦)))( +𝑣 β€˜π‘‹)(π‘‡β€˜(π‘†β€˜π‘§))))
4936, 40, 483eqtr4rd 2777 . . . 4 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§)) = (π‘‡β€˜(π‘†β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧))))
5025, 49eqtr4d 2769 . . 3 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ (BaseSetβ€˜π‘ˆ) ∧ 𝑧 ∈ (BaseSetβ€˜π‘ˆ)) β†’ ((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§)))
5150rgen3 3196 . 2 βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘ˆ)βˆ€π‘§ ∈ (BaseSetβ€˜π‘ˆ)((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§))
52 lnocoi.n . . . 4 𝑁 = (π‘ˆ LnOp 𝑋)
5311, 5, 20, 31, 17, 33, 52islno 30511 . . 3 ((π‘ˆ ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec) β†’ ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘‹) ∧ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘ˆ)βˆ€π‘§ ∈ (BaseSetβ€˜π‘ˆ)((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§)))))
549, 2, 53mp2an 689 . 2 ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSetβ€˜π‘ˆ)⟢(BaseSetβ€˜π‘‹) ∧ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘ˆ)βˆ€π‘§ ∈ (BaseSetβ€˜π‘ˆ)((𝑇 ∘ 𝑆)β€˜((π‘₯( ·𝑠OLD β€˜π‘ˆ)𝑦)( +𝑣 β€˜π‘ˆ)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘¦))( +𝑣 β€˜π‘‹)((𝑇 ∘ 𝑆)β€˜π‘§))))
5516, 51, 54mpbir2an 708 1 (𝑇 ∘ 𝑆) ∈ 𝑁
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055   ∘ ccom 5673  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  β„‚cc 11107  NrmCVeccnv 30342   +𝑣 cpv 30343  BaseSetcba 30344   ·𝑠OLD cns 30345   LnOp clno 30498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-map 8821  df-grpo 30251  df-ablo 30303  df-vc 30317  df-nv 30350  df-va 30353  df-ba 30354  df-sm 30355  df-0v 30356  df-nmcv 30358  df-lno 30502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator