Step | Hyp | Ref
| Expression |
1 | | lnocoi.w |
. . . 4
β’ π β NrmCVec |
2 | | lnocoi.x |
. . . 4
β’ π β NrmCVec |
3 | | lnocoi.t |
. . . 4
β’ π β π |
4 | | eqid 2733 |
. . . . 5
β’
(BaseSetβπ) =
(BaseSetβπ) |
5 | | eqid 2733 |
. . . . 5
β’
(BaseSetβπ) =
(BaseSetβπ) |
6 | | lnocoi.m |
. . . . 5
β’ π = (π LnOp π) |
7 | 4, 5, 6 | lnof 30008 |
. . . 4
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π) β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
8 | 1, 2, 3, 7 | mp3an 1462 |
. . 3
β’ π:(BaseSetβπ)βΆ(BaseSetβπ) |
9 | | lnocoi.u |
. . . 4
β’ π β NrmCVec |
10 | | lnocoi.s |
. . . 4
β’ π β πΏ |
11 | | eqid 2733 |
. . . . 5
β’
(BaseSetβπ) =
(BaseSetβπ) |
12 | | lnocoi.l |
. . . . 5
β’ πΏ = (π LnOp π) |
13 | 11, 4, 12 | lnof 30008 |
. . . 4
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
14 | 9, 1, 10, 13 | mp3an 1462 |
. . 3
β’ π:(BaseSetβπ)βΆ(BaseSetβπ) |
15 | | fco 6742 |
. . 3
β’ ((π:(BaseSetβπ)βΆ(BaseSetβπ) β§ π:(BaseSetβπ)βΆ(BaseSetβπ)) β (π β π):(BaseSetβπ)βΆ(BaseSetβπ)) |
16 | 8, 14, 15 | mp2an 691 |
. 2
β’ (π β π):(BaseSetβπ)βΆ(BaseSetβπ) |
17 | | eqid 2733 |
. . . . . . . 8
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
18 | 11, 17 | nvscl 29879 |
. . . . . . 7
β’ ((π β NrmCVec β§ π₯ β β β§ π¦ β (BaseSetβπ)) β (π₯( Β·π OLD
βπ)π¦) β (BaseSetβπ)) |
19 | 9, 18 | mp3an1 1449 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β (BaseSetβπ)) β (π₯( Β·π OLD
βπ)π¦) β (BaseSetβπ)) |
20 | | eqid 2733 |
. . . . . . . 8
β’ (
+π£ βπ) = ( +π£ βπ) |
21 | 11, 20 | nvgcl 29873 |
. . . . . . 7
β’ ((π β NrmCVec β§ (π₯(
Β·π OLD βπ)π¦) β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) |
22 | 9, 21 | mp3an1 1449 |
. . . . . 6
β’ (((π₯(
Β·π OLD βπ)π¦) β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) |
23 | 19, 22 | stoic3 1779 |
. . . . 5
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) |
24 | | fvco3 6991 |
. . . . 5
β’ ((π:(BaseSetβπ)βΆ(BaseSetβπ) β§ ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) β ((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = (πβ(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)))) |
25 | 14, 23, 24 | sylancr 588 |
. . . 4
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = (πβ(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)))) |
26 | | id 22 |
. . . . . 6
β’ (π₯ β β β π₯ β
β) |
27 | 14 | ffvelcdmi 7086 |
. . . . . 6
β’ (π¦ β (BaseSetβπ) β (πβπ¦) β (BaseSetβπ)) |
28 | 14 | ffvelcdmi 7086 |
. . . . . 6
β’ (π§ β (BaseSetβπ) β (πβπ§) β (BaseSetβπ)) |
29 | 1, 2, 3 | 3pm3.2i 1340 |
. . . . . . 7
β’ (π β NrmCVec β§ π β NrmCVec β§ π β π) |
30 | | eqid 2733 |
. . . . . . . 8
β’ (
+π£ βπ) = ( +π£ βπ) |
31 | | eqid 2733 |
. . . . . . . 8
β’ (
+π£ βπ) = ( +π£ βπ) |
32 | | eqid 2733 |
. . . . . . . 8
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
33 | | eqid 2733 |
. . . . . . . 8
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
34 | 4, 5, 30, 31, 32, 33, 6 | lnolin 30007 |
. . . . . . 7
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β π) β§ (π₯ β β β§ (πβπ¦) β (BaseSetβπ) β§ (πβπ§) β (BaseSetβπ))) β (πβ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) = ((π₯( Β·π OLD
βπ)(πβ(πβπ¦)))( +π£ βπ)(πβ(πβπ§)))) |
35 | 29, 34 | mpan 689 |
. . . . . 6
β’ ((π₯ β β β§ (πβπ¦) β (BaseSetβπ) β§ (πβπ§) β (BaseSetβπ)) β (πβ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) = ((π₯( Β·π OLD
βπ)(πβ(πβπ¦)))( +π£ βπ)(πβ(πβπ§)))) |
36 | 26, 27, 28, 35 | syl3an 1161 |
. . . . 5
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β (πβ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) = ((π₯( Β·π OLD
βπ)(πβ(πβπ¦)))( +π£ βπ)(πβ(πβπ§)))) |
37 | 9, 1, 10 | 3pm3.2i 1340 |
. . . . . . 7
β’ (π β NrmCVec β§ π β NrmCVec β§ π β πΏ) |
38 | 11, 4, 20, 30, 17, 32, 12 | lnolin 30007 |
. . . . . . 7
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β§ (π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) |
39 | 37, 38 | mpan 689 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β (πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) |
40 | 39 | fveq2d 6896 |
. . . . 5
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β (πβ(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§))) = (πβ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§)))) |
41 | | simp2 1138 |
. . . . . . . 8
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β π¦ β (BaseSetβπ)) |
42 | | fvco3 6991 |
. . . . . . . 8
β’ ((π:(BaseSetβπ)βΆ(BaseSetβπ) β§ π¦ β (BaseSetβπ)) β ((π β π)βπ¦) = (πβ(πβπ¦))) |
43 | 14, 41, 42 | sylancr 588 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π β π)βπ¦) = (πβ(πβπ¦))) |
44 | 43 | oveq2d 7425 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β (π₯( Β·π OLD
βπ)((π β π)βπ¦)) = (π₯( Β·π OLD
βπ)(πβ(πβπ¦)))) |
45 | | simp3 1139 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β π§ β (BaseSetβπ)) |
46 | | fvco3 6991 |
. . . . . . 7
β’ ((π:(BaseSetβπ)βΆ(BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π β π)βπ§) = (πβ(πβπ§))) |
47 | 14, 45, 46 | sylancr 588 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π β π)βπ§) = (πβ(πβπ§))) |
48 | 44, 47 | oveq12d 7427 |
. . . . 5
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§)) = ((π₯( Β·π OLD
βπ)(πβ(πβπ¦)))( +π£ βπ)(πβ(πβπ§)))) |
49 | 36, 40, 48 | 3eqtr4rd 2784 |
. . . 4
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§)) = (πβ(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)))) |
50 | 25, 49 | eqtr4d 2776 |
. . 3
β’ ((π₯ β β β§ π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§))) |
51 | 50 | rgen3 3203 |
. 2
β’
βπ₯ β
β βπ¦ β
(BaseSetβπ)βπ§ β (BaseSetβπ)((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§)) |
52 | | lnocoi.n |
. . . 4
β’ π = (π LnOp π) |
53 | 11, 5, 20, 31, 17, 33, 52 | islno 30006 |
. . 3
β’ ((π β NrmCVec β§ π β NrmCVec) β ((π β π) β π β ((π β π):(BaseSetβπ)βΆ(BaseSetβπ) β§ βπ₯ β β βπ¦ β (BaseSetβπ)βπ§ β (BaseSetβπ)((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§))))) |
54 | 9, 2, 53 | mp2an 691 |
. 2
β’ ((π β π) β π β ((π β π):(BaseSetβπ)βΆ(BaseSetβπ) β§ βπ₯ β β βπ¦ β (BaseSetβπ)βπ§ β (BaseSetβπ)((π β π)β((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)((π β π)βπ¦))( +π£ βπ)((π β π)βπ§)))) |
55 | 16, 51, 54 | mpbir2an 710 |
1
β’ (π β π) β π |