Step | Hyp | Ref
| Expression |
1 | | lnocoi.w |
. . . 4
⊢ 𝑊 ∈ NrmCVec |
2 | | lnocoi.x |
. . . 4
⊢ 𝑋 ∈ NrmCVec |
3 | | lnocoi.t |
. . . 4
⊢ 𝑇 ∈ 𝑀 |
4 | | eqid 2738 |
. . . . 5
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(BaseSet‘𝑋) =
(BaseSet‘𝑋) |
6 | | lnocoi.m |
. . . . 5
⊢ 𝑀 = (𝑊 LnOp 𝑋) |
7 | 4, 5, 6 | lnof 29117 |
. . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) → 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋)) |
8 | 1, 2, 3, 7 | mp3an 1460 |
. . 3
⊢ 𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋) |
9 | | lnocoi.u |
. . . 4
⊢ 𝑈 ∈ NrmCVec |
10 | | lnocoi.s |
. . . 4
⊢ 𝑆 ∈ 𝐿 |
11 | | eqid 2738 |
. . . . 5
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
12 | | lnocoi.l |
. . . . 5
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
13 | 11, 4, 12 | lnof 29117 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) → 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) |
14 | 9, 1, 10, 13 | mp3an 1460 |
. . 3
⊢ 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) |
15 | | fco 6624 |
. . 3
⊢ ((𝑇:(BaseSet‘𝑊)⟶(BaseSet‘𝑋) ∧ 𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋)) |
16 | 8, 14, 15 | mp2an 689 |
. 2
⊢ (𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) |
17 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
18 | 11, 17 | nvscl 28988 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑈)𝑦) ∈ (BaseSet‘𝑈)) |
19 | 9, 18 | mp3an1 1447 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑈)𝑦) ∈ (BaseSet‘𝑈)) |
20 | | eqid 2738 |
. . . . . . . 8
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
21 | 11, 20 | nvgcl 28982 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥(
·𝑠OLD ‘𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) |
22 | 9, 21 | mp3an1 1447 |
. . . . . 6
⊢ (((𝑥(
·𝑠OLD ‘𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) |
23 | 19, 22 | stoic3 1779 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) |
24 | | fvco3 6867 |
. . . . 5
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) |
25 | 14, 23, 24 | sylancr 587 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) |
26 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
27 | 14 | ffvelrni 6960 |
. . . . . 6
⊢ (𝑦 ∈ (BaseSet‘𝑈) → (𝑆‘𝑦) ∈ (BaseSet‘𝑊)) |
28 | 14 | ffvelrni 6960 |
. . . . . 6
⊢ (𝑧 ∈ (BaseSet‘𝑈) → (𝑆‘𝑧) ∈ (BaseSet‘𝑊)) |
29 | 1, 2, 3 | 3pm3.2i 1338 |
. . . . . . 7
⊢ (𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) |
30 | | eqid 2738 |
. . . . . . . 8
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
31 | | eqid 2738 |
. . . . . . . 8
⊢ (
+𝑣 ‘𝑋) = ( +𝑣 ‘𝑋) |
32 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
33 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠OLD ‘𝑋) = ( ·𝑠OLD
‘𝑋) |
34 | 4, 5, 30, 31, 32, 33, 6 | lnolin 29116 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀) ∧ (𝑥 ∈ ℂ ∧ (𝑆‘𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆‘𝑧) ∈ (BaseSet‘𝑊))) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) |
35 | 29, 34 | mpan 687 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ (𝑆‘𝑦) ∈ (BaseSet‘𝑊) ∧ (𝑆‘𝑧) ∈ (BaseSet‘𝑊)) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) |
36 | 26, 27, 28, 35 | syl3an 1159 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) |
37 | 9, 1, 10 | 3pm3.2i 1338 |
. . . . . . 7
⊢ (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) |
38 | 11, 4, 20, 30, 17, 32, 12 | lnolin 29116 |
. . . . . . 7
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) |
39 | 37, 38 | mpan 687 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧))) |
40 | 39 | fveq2d 6778 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧))) = (𝑇‘((𝑥( ·𝑠OLD
‘𝑊)(𝑆‘𝑦))( +𝑣 ‘𝑊)(𝑆‘𝑧)))) |
41 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ (BaseSet‘𝑈)) |
42 | | fvco3 6867 |
. . . . . . . 8
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) |
43 | 14, 41, 42 | sylancr 587 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) |
44 | 43 | oveq2d 7291 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦)) = (𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))) |
45 | | simp3 1137 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → 𝑧 ∈ (BaseSet‘𝑈)) |
46 | | fvco3 6867 |
. . . . . . 7
⊢ ((𝑆:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑧) = (𝑇‘(𝑆‘𝑧))) |
47 | 14, 45, 46 | sylancr 587 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘𝑧) = (𝑇‘(𝑆‘𝑧))) |
48 | 44, 47 | oveq12d 7293 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)(𝑇‘(𝑆‘𝑦)))( +𝑣 ‘𝑋)(𝑇‘(𝑆‘𝑧)))) |
49 | 36, 40, 48 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) = (𝑇‘(𝑆‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)))) |
50 | 25, 49 | eqtr4d 2781 |
. . 3
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧))) |
51 | 50 | rgen3 3121 |
. 2
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
(BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)) |
52 | | lnocoi.n |
. . . 4
⊢ 𝑁 = (𝑈 LnOp 𝑋) |
53 | 11, 5, 20, 31, 17, 33, 52 | islno 29115 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec) → ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧))))) |
54 | 9, 2, 53 | mp2an 689 |
. 2
⊢ ((𝑇 ∘ 𝑆) ∈ 𝑁 ↔ ((𝑇 ∘ 𝑆):(BaseSet‘𝑈)⟶(BaseSet‘𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)((𝑇 ∘ 𝑆)‘((𝑥( ·𝑠OLD
‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑋)((𝑇 ∘ 𝑆)‘𝑦))( +𝑣 ‘𝑋)((𝑇 ∘ 𝑆)‘𝑧)))) |
55 | 16, 51, 54 | mpbir2an 708 |
1
⊢ (𝑇 ∘ 𝑆) ∈ 𝑁 |