| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngALT | Structured version Visualization version GIF version | ||
| Description: The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Alternate version of 2zrng 48233, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 48242) and a multiplicative semigroup (see 2zrngmsgrp 48245). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| 2zrngALT | ⊢ 𝑅 ∈ Rng |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 1, 2 | 2zrngaabl 48242 | . 2 ⊢ 𝑅 ∈ Abel |
| 4 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 5 | 1, 2, 4 | 2zrngmsgrp 48245 | . 2 ⊢ 𝑀 ∈ Smgrp |
| 6 | elrabi 3657 | . . . . . 6 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
| 7 | 6 | zcnd 12646 | . . . . 5 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
| 8 | 7, 1 | eleq2s 2847 | . . . 4 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
| 9 | elrabi 3657 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
| 10 | 9 | zcnd 12646 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
| 11 | 10, 1 | eleq2s 2847 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
| 12 | elrabi 3657 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
| 13 | 12 | zcnd 12646 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
| 14 | 13, 1 | eleq2s 2847 | . . . 4 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
| 15 | adddi 11164 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦))) | |
| 16 | adddir 11172 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) | |
| 17 | 15, 16 | jca 511 | . . . 4 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
| 18 | 8, 11, 14, 17 | syl3an 1160 | . . 3 ⊢ ((𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
| 19 | 18 | rgen3 3183 | . 2 ⊢ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
| 20 | 1, 2 | 2zrngbas 48234 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
| 21 | 1, 2 | 2zrngadd 48235 | . . 3 ⊢ + = (+g‘𝑅) |
| 22 | 1, 2 | 2zrngmul 48243 | . . 3 ⊢ · = (.r‘𝑅) |
| 23 | 20, 4, 21, 22 | isrng 20070 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))) |
| 24 | 3, 5, 19, 23 | mpbir3an 1342 | 1 ⊢ 𝑅 ∈ Rng |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 2c2 12248 ℤcz 12536 ↾s cress 17207 Smgrpcsgrp 18652 Abelcabl 19718 mulGrpcmgp 20056 Rngcrng 20068 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ring 20151 df-cring 20152 df-cnfld 21272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |