![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngALT | Structured version Visualization version GIF version |
Description: The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Alternate version of 2zrng 48085, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 48094) and a multiplicative semigroup (see 2zrngmsgrp 48097). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngALT | ⊢ 𝑅 ∈ Rng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngaabl 48094 | . 2 ⊢ 𝑅 ∈ Abel |
4 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 1, 2, 4 | 2zrngmsgrp 48097 | . 2 ⊢ 𝑀 ∈ Smgrp |
6 | elrabi 3690 | . . . . . 6 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12721 | . . . . 5 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2857 | . . . 4 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | elrabi 3690 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
10 | 9 | zcnd 12721 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
11 | 10, 1 | eleq2s 2857 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
12 | elrabi 3690 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
13 | 12 | zcnd 12721 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
14 | 13, 1 | eleq2s 2857 | . . . 4 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
15 | adddi 11242 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦))) | |
16 | adddir 11250 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) | |
17 | 15, 16 | jca 511 | . . . 4 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
18 | 8, 11, 14, 17 | syl3an 1159 | . . 3 ⊢ ((𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
19 | 18 | rgen3 3202 | . 2 ⊢ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
20 | 1, 2 | 2zrngbas 48086 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
21 | 1, 2 | 2zrngadd 48087 | . . 3 ⊢ + = (+g‘𝑅) |
22 | 1, 2 | 2zrngmul 48095 | . . 3 ⊢ · = (.r‘𝑅) |
23 | 20, 4, 21, 22 | isrng 20172 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))) |
24 | 3, 5, 19, 23 | mpbir3an 1340 | 1 ⊢ 𝑅 ∈ Rng |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 + caddc 11156 · cmul 11158 2c2 12319 ℤcz 12611 ↾s cress 17274 Smgrpcsgrp 18744 Abelcabl 19814 mulGrpcmgp 20152 Rngcrng 20170 ℂfldccnfld 21382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ring 20253 df-cring 20254 df-cnfld 21383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |