![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngALT | Structured version Visualization version GIF version |
Description: The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Alternate version of 2zrng 47964, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 47973) and a multiplicative semigroup (see 2zrngmsgrp 47976). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngALT | ⊢ 𝑅 ∈ Rng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngaabl 47973 | . 2 ⊢ 𝑅 ∈ Abel |
4 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 1, 2, 4 | 2zrngmsgrp 47976 | . 2 ⊢ 𝑀 ∈ Smgrp |
6 | elrabi 3703 | . . . . . 6 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12748 | . . . . 5 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2862 | . . . 4 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | elrabi 3703 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
10 | 9 | zcnd 12748 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
11 | 10, 1 | eleq2s 2862 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
12 | elrabi 3703 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
13 | 12 | zcnd 12748 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
14 | 13, 1 | eleq2s 2862 | . . . 4 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
15 | adddi 11273 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦))) | |
16 | adddir 11281 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) | |
17 | 15, 16 | jca 511 | . . . 4 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
18 | 8, 11, 14, 17 | syl3an 1160 | . . 3 ⊢ ((𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
19 | 18 | rgen3 3210 | . 2 ⊢ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
20 | 1, 2 | 2zrngbas 47965 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
21 | 1, 2 | 2zrngadd 47966 | . . 3 ⊢ + = (+g‘𝑅) |
22 | 1, 2 | 2zrngmul 47974 | . . 3 ⊢ · = (.r‘𝑅) |
23 | 20, 4, 21, 22 | isrng 20181 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))) |
24 | 3, 5, 19, 23 | mpbir3an 1341 | 1 ⊢ 𝑅 ∈ Rng |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 2c2 12348 ℤcz 12639 ↾s cress 17287 Smgrpcsgrp 18756 Abelcabl 19823 mulGrpcmgp 20161 Rngcrng 20179 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ring 20262 df-cring 20263 df-cnfld 21388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |