Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngALT | Structured version Visualization version GIF version |
Description: The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng 45462, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 45471) and a multiplicative semigroup (see 2zrngmsgrp 45474). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngALT | ⊢ 𝑅 ∈ Rng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngaabl 45471 | . 2 ⊢ 𝑅 ∈ Abel |
4 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 1, 2, 4 | 2zrngmsgrp 45474 | . 2 ⊢ 𝑀 ∈ Smgrp |
6 | elrabi 3620 | . . . . . 6 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12426 | . . . . 5 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2859 | . . . 4 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | elrabi 3620 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
10 | 9 | zcnd 12426 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
11 | 10, 1 | eleq2s 2859 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
12 | elrabi 3620 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
13 | 12 | zcnd 12426 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
14 | 13, 1 | eleq2s 2859 | . . . 4 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
15 | adddi 10961 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦))) | |
16 | adddir 10967 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) | |
17 | 15, 16 | jca 512 | . . . 4 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
18 | 8, 11, 14, 17 | syl3an 1159 | . . 3 ⊢ ((𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
19 | 18 | rgen3 3130 | . 2 ⊢ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
20 | 1, 2 | 2zrngbas 45463 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
21 | 1, 2 | 2zrngadd 45464 | . . 3 ⊢ + = (+g‘𝑅) |
22 | 1, 2 | 2zrngmul 45472 | . . 3 ⊢ · = (.r‘𝑅) |
23 | 20, 4, 21, 22 | isrng 45403 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))) |
24 | 3, 5, 19, 23 | mpbir3an 1340 | 1 ⊢ 𝑅 ∈ Rng |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 {crab 3070 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 + caddc 10875 · cmul 10877 2c2 12028 ℤcz 12319 ↾s cress 16939 Smgrpcsgrp 18372 Abelcabl 19385 mulGrpcmgp 19718 ℂfldccnfld 20595 Rngcrng 45401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ring 19783 df-cring 19784 df-cnfld 20596 df-rng0 45402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |