MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpoi Structured version   Visualization version   GIF version

Theorem isgrpoi 30499
Description: Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpoi.1 𝑋 ∈ V
isgrpoi.2 𝐺:(𝑋 × 𝑋)⟶𝑋
isgrpoi.3 ((𝑥𝑋𝑦𝑋𝑧𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
isgrpoi.4 𝑈𝑋
isgrpoi.5 (𝑥𝑋 → (𝑈𝐺𝑥) = 𝑥)
isgrpoi.6 (𝑥𝑋𝑁𝑋)
isgrpoi.7 (𝑥𝑋 → (𝑁𝐺𝑥) = 𝑈)
Assertion
Ref Expression
isgrpoi 𝐺 ∈ GrpOp
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑈,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑁
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpoi
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isgrpoi.2 . 2 𝐺:(𝑋 × 𝑋)⟶𝑋
2 isgrpoi.3 . . 3 ((𝑥𝑋𝑦𝑋𝑧𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
32rgen3 3178 . 2 𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
4 isgrpoi.4 . . 3 𝑈𝑋
5 isgrpoi.5 . . . . 5 (𝑥𝑋 → (𝑈𝐺𝑥) = 𝑥)
6 isgrpoi.6 . . . . . 6 (𝑥𝑋𝑁𝑋)
7 isgrpoi.7 . . . . . 6 (𝑥𝑋 → (𝑁𝐺𝑥) = 𝑈)
8 oveq1 7362 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦𝐺𝑥) = (𝑁𝐺𝑥))
98eqeq1d 2735 . . . . . . 7 (𝑦 = 𝑁 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑁𝐺𝑥) = 𝑈))
109rspcev 3573 . . . . . 6 ((𝑁𝑋 ∧ (𝑁𝐺𝑥) = 𝑈) → ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
116, 7, 10syl2anc 584 . . . . 5 (𝑥𝑋 → ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
125, 11jca 511 . . . 4 (𝑥𝑋 → ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1312rgen 3050 . . 3 𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
14 oveq1 7362 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1514eqeq1d 2735 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
16 eqeq2 2745 . . . . . . 7 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
1716rexbidv 3157 . . . . . 6 (𝑢 = 𝑈 → (∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1815, 17anbi12d 632 . . . . 5 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
1918ralbidv 3156 . . . 4 (𝑢 = 𝑈 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
2019rspcev 3573 . . 3 ((𝑈𝑋 ∧ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
214, 13, 20mp2an 692 . 2 𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)
22 isgrpoi.1 . . . . 5 𝑋 ∈ V
2322, 22xpex 7695 . . . 4 (𝑋 × 𝑋) ∈ V
24 fex 7169 . . . 4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ (𝑋 × 𝑋) ∈ V) → 𝐺 ∈ V)
251, 23, 24mp2an 692 . . 3 𝐺 ∈ V
265eqcomd 2739 . . . . . . . . 9 (𝑥𝑋𝑥 = (𝑈𝐺𝑥))
27 rspceov 7404 . . . . . . . . . 10 ((𝑈𝑋𝑥𝑋𝑥 = (𝑈𝐺𝑥)) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
284, 27mp3an1 1450 . . . . . . . . 9 ((𝑥𝑋𝑥 = (𝑈𝐺𝑥)) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
2926, 28mpdan 687 . . . . . . . 8 (𝑥𝑋 → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
3029rgen 3050 . . . . . . 7 𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧)
31 foov 7529 . . . . . . 7 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧)))
321, 30, 31mpbir2an 711 . . . . . 6 𝐺:(𝑋 × 𝑋)–onto𝑋
33 forn 6746 . . . . . 6 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
3432, 33ax-mp 5 . . . . 5 ran 𝐺 = 𝑋
3534eqcomi 2742 . . . 4 𝑋 = ran 𝐺
3635isgrpo 30498 . . 3 (𝐺 ∈ V → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
3725, 36ax-mp 5 . 2 (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
381, 3, 21, 37mpbir3an 1342 1 𝐺 ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437   × cxp 5619  ran crn 5622  wf 6485  ontowfo 6487  (class class class)co 7355  GrpOpcgr 30490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-grpo 30494
This theorem is referenced by:  cnaddabloOLD  30582  hilablo  31161  hhssabloilem  31262  grposnOLD  37995
  Copyright terms: Public domain W3C validator