MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpoi Structured version   Visualization version   GIF version

Theorem isgrpoi 27966
Description: Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpoi.1 𝑋 ∈ V
isgrpoi.2 𝐺:(𝑋 × 𝑋)⟶𝑋
isgrpoi.3 ((𝑥𝑋𝑦𝑋𝑧𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
isgrpoi.4 𝑈𝑋
isgrpoi.5 (𝑥𝑋 → (𝑈𝐺𝑥) = 𝑥)
isgrpoi.6 (𝑥𝑋𝑁𝑋)
isgrpoi.7 (𝑥𝑋 → (𝑁𝐺𝑥) = 𝑈)
Assertion
Ref Expression
isgrpoi 𝐺 ∈ GrpOp
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑈,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑁
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpoi
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isgrpoi.2 . 2 𝐺:(𝑋 × 𝑋)⟶𝑋
2 isgrpoi.3 . . 3 ((𝑥𝑋𝑦𝑋𝑧𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
32rgen3 3171 . 2 𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
4 isgrpoi.4 . . 3 𝑈𝑋
5 isgrpoi.5 . . . . 5 (𝑥𝑋 → (𝑈𝐺𝑥) = 𝑥)
6 isgrpoi.6 . . . . . 6 (𝑥𝑋𝑁𝑋)
7 isgrpoi.7 . . . . . 6 (𝑥𝑋 → (𝑁𝐺𝑥) = 𝑈)
8 oveq1 7023 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦𝐺𝑥) = (𝑁𝐺𝑥))
98eqeq1d 2797 . . . . . . 7 (𝑦 = 𝑁 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑁𝐺𝑥) = 𝑈))
109rspcev 3559 . . . . . 6 ((𝑁𝑋 ∧ (𝑁𝐺𝑥) = 𝑈) → ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
116, 7, 10syl2anc 584 . . . . 5 (𝑥𝑋 → ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
125, 11jca 512 . . . 4 (𝑥𝑋 → ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1312rgen 3115 . . 3 𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
14 oveq1 7023 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1514eqeq1d 2797 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
16 eqeq2 2806 . . . . . . 7 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
1716rexbidv 3260 . . . . . 6 (𝑢 = 𝑈 → (∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1815, 17anbi12d 630 . . . . 5 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
1918ralbidv 3164 . . . 4 (𝑢 = 𝑈 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
2019rspcev 3559 . . 3 ((𝑈𝑋 ∧ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
214, 13, 20mp2an 688 . 2 𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)
22 isgrpoi.1 . . . . 5 𝑋 ∈ V
2322, 22xpex 7333 . . . 4 (𝑋 × 𝑋) ∈ V
24 fex 6855 . . . 4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ (𝑋 × 𝑋) ∈ V) → 𝐺 ∈ V)
251, 23, 24mp2an 688 . . 3 𝐺 ∈ V
265eqcomd 2801 . . . . . . . . 9 (𝑥𝑋𝑥 = (𝑈𝐺𝑥))
27 rspceov 7062 . . . . . . . . . 10 ((𝑈𝑋𝑥𝑋𝑥 = (𝑈𝐺𝑥)) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
284, 27mp3an1 1440 . . . . . . . . 9 ((𝑥𝑋𝑥 = (𝑈𝐺𝑥)) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
2926, 28mpdan 683 . . . . . . . 8 (𝑥𝑋 → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
3029rgen 3115 . . . . . . 7 𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧)
31 foov 7178 . . . . . . 7 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧)))
321, 30, 31mpbir2an 707 . . . . . 6 𝐺:(𝑋 × 𝑋)–onto𝑋
33 forn 6461 . . . . . 6 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
3432, 33ax-mp 5 . . . . 5 ran 𝐺 = 𝑋
3534eqcomi 2804 . . . 4 𝑋 = ran 𝐺
3635isgrpo 27965 . . 3 (𝐺 ∈ V → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
3725, 36ax-mp 5 . 2 (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
381, 3, 21, 37mpbir3an 1334 1 𝐺 ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106  Vcvv 3437   × cxp 5441  ran crn 5444  wf 6221  ontowfo 6223  (class class class)co 7016  GrpOpcgr 27957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-grpo 27961
This theorem is referenced by:  cnaddabloOLD  28049  hilablo  28628  hhssabloilem  28729  grposnOLD  34692
  Copyright terms: Public domain W3C validator