![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 0lnfn | Structured version Visualization version GIF version |
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0lnfn | ⊢ ( ℋ × {0}) ∈ LinFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
2 | 1 | fconst6 6811 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
3 | hvmulcl 31045 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | hvaddcl 31044 | . . . . . . 7 ⊢ (((𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) | |
5 | 3, 4 | sylan 579 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
6 | c0ex 11284 | . . . . . . 7 ⊢ 0 ∈ V | |
7 | 6 | fvconst2 7241 | . . . . . 6 ⊢ (((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
9 | 6 | fvconst2 7241 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
10 | 9 | oveq2d 7464 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0)) |
11 | mul01 11469 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 · 0) = 0) | |
12 | 10, 11 | sylan9eqr 2802 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0) |
13 | 6 | fvconst2 7241 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0) |
14 | 12, 13 | oveqan12d 7467 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0)) |
15 | 00id 11465 | . . . . . 6 ⊢ (0 + 0) = 0 | |
16 | 14, 15 | eqtrdi 2796 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0) |
17 | 8, 16 | eqtr4d 2783 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
18 | 17 | 3impa 1110 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
19 | 18 | rgen3 3210 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) |
20 | ellnfn 31915 | . 2 ⊢ (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))) | |
21 | 2, 19, 20 | mpbir2an 710 | 1 ⊢ ( ℋ × {0}) ∈ LinFn |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 · cmul 11189 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hilex 31031 ax-hfvadd 31032 ax-hfvmul 31037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-lnfn 31880 |
This theorem is referenced by: nmfn0 32019 lnfn0 32079 lnfnmul 32080 nmbdfnlb 32082 nmcfnex 32085 nmcfnlb 32086 lnfncon 32088 riesz4 32096 riesz1 32097 |
Copyright terms: Public domain | W3C validator |