| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 0lnfn | Structured version Visualization version GIF version | ||
| Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0lnfn | ⊢ ( ℋ × {0}) ∈ LinFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11107 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | 1 | fconst6 6714 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
| 3 | hvmulcl 30957 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 4 | hvaddcl 30956 | . . . . . . 7 ⊢ (((𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
| 6 | c0ex 11109 | . . . . . . 7 ⊢ 0 ∈ V | |
| 7 | 6 | fvconst2 7140 | . . . . . 6 ⊢ (((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 9 | 6 | fvconst2 7140 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 10 | 9 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0)) |
| 11 | mul01 11295 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 · 0) = 0) | |
| 12 | 10, 11 | sylan9eqr 2786 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0) |
| 13 | 6 | fvconst2 7140 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0) |
| 14 | 12, 13 | oveqan12d 7368 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0)) |
| 15 | 00id 11291 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 16 | 14, 15 | eqtrdi 2780 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0) |
| 17 | 8, 16 | eqtr4d 2767 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 19 | 18 | rgen3 3174 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) |
| 20 | ellnfn 31827 | . 2 ⊢ (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))) | |
| 21 | 2, 19, 20 | mpbir2an 711 | 1 ⊢ ( ℋ × {0}) ∈ LinFn |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4577 × cxp 5617 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 + caddc 11012 · cmul 11014 ℋchba 30863 +ℎ cva 30864 ·ℎ csm 30865 LinFnclf 30898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-hilex 30943 ax-hfvadd 30944 ax-hfvmul 30949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-lnfn 31792 |
| This theorem is referenced by: nmfn0 31931 lnfn0 31991 lnfnmul 31992 nmbdfnlb 31994 nmcfnex 31997 nmcfnlb 31998 lnfncon 32000 riesz4 32008 riesz1 32009 |
| Copyright terms: Public domain | W3C validator |