| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 0lnfn | Structured version Visualization version GIF version | ||
| Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0lnfn | ⊢ ( ℋ × {0}) ∈ LinFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11104 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | 1 | fconst6 6713 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
| 3 | hvmulcl 30993 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 4 | hvaddcl 30992 | . . . . . . 7 ⊢ (((𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
| 6 | c0ex 11106 | . . . . . . 7 ⊢ 0 ∈ V | |
| 7 | 6 | fvconst2 7138 | . . . . . 6 ⊢ (((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 9 | 6 | fvconst2 7138 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 10 | 9 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0)) |
| 11 | mul01 11292 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 · 0) = 0) | |
| 12 | 10, 11 | sylan9eqr 2788 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0) |
| 13 | 6 | fvconst2 7138 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0) |
| 14 | 12, 13 | oveqan12d 7365 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0)) |
| 15 | 00id 11288 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 16 | 14, 15 | eqtrdi 2782 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0) |
| 17 | 8, 16 | eqtr4d 2769 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 19 | 18 | rgen3 3177 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) |
| 20 | ellnfn 31863 | . 2 ⊢ (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))) | |
| 21 | 2, 19, 20 | mpbir2an 711 | 1 ⊢ ( ℋ × {0}) ∈ LinFn |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4573 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 + caddc 11009 · cmul 11011 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 LinFnclf 30934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hilex 30979 ax-hfvadd 30980 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-lnfn 31828 |
| This theorem is referenced by: nmfn0 31967 lnfn0 32027 lnfnmul 32028 nmbdfnlb 32030 nmcfnex 32033 nmcfnlb 32034 lnfncon 32036 riesz4 32044 riesz1 32045 |
| Copyright terms: Public domain | W3C validator |