| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 0lnfn | Structured version Visualization version GIF version | ||
| Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0lnfn | ⊢ ( ℋ × {0}) ∈ LinFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11142 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | 1 | fconst6 6732 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
| 3 | hvmulcl 30992 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 4 | hvaddcl 30991 | . . . . . . 7 ⊢ (((𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
| 6 | c0ex 11144 | . . . . . . 7 ⊢ 0 ∈ V | |
| 7 | 6 | fvconst2 7160 | . . . . . 6 ⊢ (((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
| 9 | 6 | fvconst2 7160 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 10 | 9 | oveq2d 7385 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0)) |
| 11 | mul01 11329 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 · 0) = 0) | |
| 12 | 10, 11 | sylan9eqr 2786 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0) |
| 13 | 6 | fvconst2 7160 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0) |
| 14 | 12, 13 | oveqan12d 7388 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0)) |
| 15 | 00id 11325 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 16 | 14, 15 | eqtrdi 2780 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0) |
| 17 | 8, 16 | eqtr4d 2767 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
| 19 | 18 | rgen3 3180 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) |
| 20 | ellnfn 31862 | . 2 ⊢ (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))) | |
| 21 | 2, 19, 20 | mpbir2an 711 | 1 ⊢ ( ℋ × {0}) ∈ LinFn |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4585 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 + caddc 11047 · cmul 11049 ℋchba 30898 +ℎ cva 30899 ·ℎ csm 30900 LinFnclf 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hfvmul 30984 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-lnfn 31827 |
| This theorem is referenced by: nmfn0 31966 lnfn0 32026 lnfnmul 32027 nmbdfnlb 32029 nmcfnex 32032 nmcfnlb 32033 lnfncon 32035 riesz4 32043 riesz1 32044 |
| Copyright terms: Public domain | W3C validator |