HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0lnfn Structured version   Visualization version   GIF version

Theorem 0lnfn 29184
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0lnfn ( ℋ × {0}) ∈ LinFn

Proof of Theorem 0lnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10234 . . 3 0 ∈ ℂ
21fconst6 6235 . 2 ( ℋ × {0}): ℋ⟶ℂ
3 hvmulcl 28210 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
4 hvaddcl 28209 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
53, 4sylan 569 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
6 c0ex 10236 . . . . . . 7 0 ∈ V
76fvconst2 6613 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = 0)
85, 7syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = 0)
96fvconst2 6613 . . . . . . . . 9 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
109oveq2d 6809 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0))
11 mul01 10417 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1210, 11sylan9eqr 2827 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0)
136fvconst2 6613 . . . . . . 7 (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0)
1412, 13oveqan12d 6812 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0))
15 00id 10413 . . . . . 6 (0 + 0) = 0
1614, 15syl6eq 2821 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0)
178, 16eqtr4d 2808 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))
18173impa 1100 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))
1918rgen3 3125 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))
20 ellnfn 29082 . 2 (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))))
212, 19, 20mpbir2an 690 1 ( ℋ × {0}) ∈ LinFn
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  wral 3061  {csn 4316   × cxp 5247  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138   + caddc 10141   · cmul 10143  chil 28116   + cva 28117   · csm 28118  LinFnclf 28151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-hilex 28196  ax-hfvadd 28197  ax-hfvmul 28202
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-lnfn 29047
This theorem is referenced by:  nmfn0  29186  lnfn0  29246  lnfnmul  29247  nmbdfnlb  29249  nmcfnex  29252  nmcfnlb  29253  lnfncon  29255  riesz4  29263  riesz1  29264
  Copyright terms: Public domain W3C validator