![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1sgrp | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on β0 restricted to the modulo function πΌ and the constant functions (πΊβπΎ) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
smndex1mgm.b | β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) |
smndex1mgm.s | β’ π = (π βΎs π΅) |
Ref | Expression |
---|---|
smndex1sgrp | β’ π β Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.m | . . 3 β’ π = (EndoFMndββ0) | |
2 | smndex1ibas.n | . . 3 β’ π β β | |
3 | smndex1ibas.i | . . 3 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
4 | smndex1ibas.g | . . 3 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
5 | smndex1mgm.b | . . 3 β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) | |
6 | smndex1mgm.s | . . 3 β’ π = (π βΎs π΅) | |
7 | 1, 2, 3, 4, 5, 6 | smndex1mgm 18822 | . 2 β’ π β Mgm |
8 | eqid 2724 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
9 | eqid 2724 | . . . . . 6 β’ (+gβπ) = (+gβπ) | |
10 | 8, 9 | mgmcl 18566 | . . . . 5 β’ ((π β Mgm β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) β (Baseβπ)) |
11 | 7, 10 | mp3an1 1444 | . . . 4 β’ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) β (Baseβπ)) |
12 | snex 5421 | . . . . . . . . . 10 β’ {πΌ} β V | |
13 | ovex 7434 | . . . . . . . . . . 11 β’ (0..^π) β V | |
14 | snex 5421 | . . . . . . . . . . 11 β’ {(πΊβπ)} β V | |
15 | 13, 14 | iunex 7948 | . . . . . . . . . 10 β’ βͺ π β (0..^π){(πΊβπ)} β V |
16 | 12, 15 | unex 7726 | . . . . . . . . 9 β’ ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) β V |
17 | 5, 16 | eqeltri 2821 | . . . . . . . 8 β’ π΅ β V |
18 | eqid 2724 | . . . . . . . . 9 β’ (+gβπ) = (+gβπ) | |
19 | 6, 18 | ressplusg 17234 | . . . . . . . 8 β’ (π΅ β V β (+gβπ) = (+gβπ)) |
20 | 17, 19 | ax-mp 5 | . . . . . . 7 β’ (+gβπ) = (+gβπ) |
21 | 20 | eqcomi 2733 | . . . . . 6 β’ (+gβπ) = (+gβπ) |
22 | 21 | oveqi 7414 | . . . . 5 β’ (π₯(+gβπ)π¦) = (π₯(+gβπ)π¦) |
23 | 1, 2, 3, 4, 5, 6 | smndex1bas 18821 | . . . . . . . 8 β’ (Baseβπ) = π΅ |
24 | 1, 2, 3, 4, 5 | smndex1basss 18820 | . . . . . . . 8 β’ π΅ β (Baseβπ) |
25 | 23, 24 | eqsstri 4008 | . . . . . . 7 β’ (Baseβπ) β (Baseβπ) |
26 | ssel 3967 | . . . . . . . 8 β’ ((Baseβπ) β (Baseβπ) β (π₯ β (Baseβπ) β π₯ β (Baseβπ))) | |
27 | ssel 3967 | . . . . . . . 8 β’ ((Baseβπ) β (Baseβπ) β (π¦ β (Baseβπ) β π¦ β (Baseβπ))) | |
28 | 26, 27 | anim12d 608 | . . . . . . 7 β’ ((Baseβπ) β (Baseβπ) β ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯ β (Baseβπ) β§ π¦ β (Baseβπ)))) |
29 | 25, 28 | ax-mp 5 | . . . . . 6 β’ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) |
30 | eqid 2724 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
31 | 1, 30, 18 | efmndov 18796 | . . . . . 6 β’ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) = (π₯ β π¦)) |
32 | 29, 31 | syl 17 | . . . . 5 β’ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) = (π₯ β π¦)) |
33 | 22, 32 | eqtrid 2776 | . . . 4 β’ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) = (π₯ β π¦)) |
34 | 11, 33 | symggrplem 18799 | . . 3 β’ ((π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((π(+gβπ)π)(+gβπ)π) = (π(+gβπ)(π(+gβπ)π))) |
35 | 34 | rgen3 3194 | . 2 β’ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)((π(+gβπ)π)(+gβπ)π) = (π(+gβπ)(π(+gβπ)π)) |
36 | 8, 9 | issgrp 18643 | . 2 β’ (π β Smgrp β (π β Mgm β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)((π(+gβπ)π)(+gβπ)π) = (π(+gβπ)(π(+gβπ)π)))) |
37 | 7, 35, 36 | mpbir2an 708 | 1 β’ π β Smgrp |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 Vcvv 3466 βͺ cun 3938 β wss 3940 {csn 4620 βͺ ciun 4987 β¦ cmpt 5221 β ccom 5670 βcfv 6533 (class class class)co 7401 0cc0 11106 βcn 12209 β0cn0 12469 ..^cfzo 13624 mod cmo 13831 Basecbs 17143 βΎs cress 17172 +gcplusg 17196 Mgmcmgm 18561 Smgrpcsgrp 18641 EndoFMndcefmnd 18783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-mgm 18563 df-sgrp 18642 df-efmnd 18784 |
This theorem is referenced by: smndex1mnd 18825 |
Copyright terms: Public domain | W3C validator |