Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1sgrp | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
2 | smndex1ibas.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | smndex1ibas.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
4 | smndex1ibas.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
5 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
6 | smndex1mgm.s | . . 3 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | smndex1mgm 18461 | . 2 ⊢ 𝑆 ∈ Mgm |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | 8, 9 | mgmcl 18244 | . . . . 5 ⊢ ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
11 | 7, 10 | mp3an1 1446 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
12 | snex 5349 | . . . . . . . . . 10 ⊢ {𝐼} ∈ V | |
13 | ovex 7288 | . . . . . . . . . . 11 ⊢ (0..^𝑁) ∈ V | |
14 | snex 5349 | . . . . . . . . . . 11 ⊢ {(𝐺‘𝑛)} ∈ V | |
15 | 13, 14 | iunex 7784 | . . . . . . . . . 10 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
16 | 12, 15 | unex 7574 | . . . . . . . . 9 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
17 | 5, 16 | eqeltri 2835 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
19 | 6, 18 | ressplusg 16926 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
20 | 17, 19 | ax-mp 5 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑆) |
21 | 20 | eqcomi 2747 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑀) |
22 | 21 | oveqi 7268 | . . . . 5 ⊢ (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑀)𝑦) |
23 | 1, 2, 3, 4, 5, 6 | smndex1bas 18460 | . . . . . . . 8 ⊢ (Base‘𝑆) = 𝐵 |
24 | 1, 2, 3, 4, 5 | smndex1basss 18459 | . . . . . . . 8 ⊢ 𝐵 ⊆ (Base‘𝑀) |
25 | 23, 24 | eqsstri 3951 | . . . . . . 7 ⊢ (Base‘𝑆) ⊆ (Base‘𝑀) |
26 | ssel 3910 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑀))) | |
27 | ssel 3910 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑦 ∈ (Base‘𝑆) → 𝑦 ∈ (Base‘𝑀))) | |
28 | 26, 27 | anim12d 608 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))) |
29 | 25, 28 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
30 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
31 | 1, 30, 18 | efmndov 18435 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
32 | 29, 31 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
33 | 22, 32 | eqtrid 2790 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥 ∘ 𝑦)) |
34 | 11, 33 | symggrplem 18438 | . . 3 ⊢ ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑆)) → ((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐))) |
35 | 34 | rgen3 3127 | . 2 ⊢ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)) |
36 | 8, 9 | issgrp 18291 | . 2 ⊢ (𝑆 ∈ Smgrp ↔ (𝑆 ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)))) |
37 | 7, 35, 36 | mpbir2an 707 | 1 ⊢ 𝑆 ∈ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 {csn 4558 ∪ ciun 4921 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 ..^cfzo 13311 mod cmo 13517 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 Mgmcmgm 18239 Smgrpcsgrp 18289 EndoFMndcefmnd 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-mgm 18241 df-sgrp 18290 df-efmnd 18423 |
This theorem is referenced by: smndex1mnd 18464 |
Copyright terms: Public domain | W3C validator |