MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1sgrp Structured version   Visualization version   GIF version

Theorem smndex1sgrp 18816
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1sgrp 𝑆 ∈ Smgrp
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1sgrp
Dummy variables 𝑦 𝑏 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1mgm 18815 . 2 𝑆 ∈ Mgm
8 eqid 2731 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2731 . . . . . 6 (+g𝑆) = (+g𝑆)
108, 9mgmcl 18551 . . . . 5 ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
117, 10mp3an1 1450 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
12 snex 5374 . . . . . . . . . 10 {𝐼} ∈ V
13 ovex 7379 . . . . . . . . . . 11 (0..^𝑁) ∈ V
14 snex 5374 . . . . . . . . . . 11 {(𝐺𝑛)} ∈ V
1513, 14iunex 7900 . . . . . . . . . 10 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
1612, 15unex 7677 . . . . . . . . 9 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
175, 16eqeltri 2827 . . . . . . . 8 𝐵 ∈ V
18 eqid 2731 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
196, 18ressplusg 17195 . . . . . . . 8 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
2017, 19ax-mp 5 . . . . . . 7 (+g𝑀) = (+g𝑆)
2120eqcomi 2740 . . . . . 6 (+g𝑆) = (+g𝑀)
2221oveqi 7359 . . . . 5 (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑀)𝑦)
231, 2, 3, 4, 5, 6smndex1bas 18814 . . . . . . . 8 (Base‘𝑆) = 𝐵
241, 2, 3, 4, 5smndex1basss 18813 . . . . . . . 8 𝐵 ⊆ (Base‘𝑀)
2523, 24eqsstri 3981 . . . . . . 7 (Base‘𝑆) ⊆ (Base‘𝑀)
26 ssel 3928 . . . . . . . 8 ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑀)))
27 ssel 3928 . . . . . . . 8 ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑦 ∈ (Base‘𝑆) → 𝑦 ∈ (Base‘𝑀)))
2826, 27anim12d 609 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑀) → ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))))
2925, 28ax-mp 5 . . . . . 6 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
30 eqid 2731 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
311, 30, 18efmndov 18789 . . . . . 6 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3229, 31syl 17 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3322, 32eqtrid 2778 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥𝑦))
3411, 33symggrplem 18792 . . 3 ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑆)) → ((𝑎(+g𝑆)𝑏)(+g𝑆)𝑐) = (𝑎(+g𝑆)(𝑏(+g𝑆)𝑐)))
3534rgen3 3177 . 2 𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g𝑆)𝑏)(+g𝑆)𝑐) = (𝑎(+g𝑆)(𝑏(+g𝑆)𝑐))
368, 9issgrp 18628 . 2 (𝑆 ∈ Smgrp ↔ (𝑆 ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g𝑆)𝑏)(+g𝑆)𝑐) = (𝑎(+g𝑆)(𝑏(+g𝑆)𝑐))))
377, 35, 36mpbir2an 711 1 𝑆 ∈ Smgrp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3900  wss 3902  {csn 4576   ciun 4941  cmpt 5172  ccom 5620  cfv 6481  (class class class)co 7346  0cc0 11006  cn 12125  0cn0 12381  ..^cfzo 13554   mod cmo 13773  Basecbs 17120  s cress 17141  +gcplusg 17161  Mgmcmgm 18546  Smgrpcsgrp 18626  EndoFMndcefmnd 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-mgm 18548  df-sgrp 18627  df-efmnd 18777
This theorem is referenced by:  smndex1mnd  18818
  Copyright terms: Public domain W3C validator