| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1sgrp | Structured version Visualization version GIF version | ||
| Description: The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 2 | smndex1ibas.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 4 | smndex1ibas.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 5 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 6 | smndex1mgm.s | . . 3 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | smndex1mgm 18883 | . 2 ⊢ 𝑆 ∈ Mgm |
| 8 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 10 | 8, 9 | mgmcl 18619 | . . . . 5 ⊢ ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 11 | 7, 10 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 12 | snex 5406 | . . . . . . . . . 10 ⊢ {𝐼} ∈ V | |
| 13 | ovex 7436 | . . . . . . . . . . 11 ⊢ (0..^𝑁) ∈ V | |
| 14 | snex 5406 | . . . . . . . . . . 11 ⊢ {(𝐺‘𝑛)} ∈ V | |
| 15 | 13, 14 | iunex 7965 | . . . . . . . . . 10 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
| 16 | 12, 15 | unex 7736 | . . . . . . . . 9 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
| 17 | 5, 16 | eqeltri 2830 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
| 18 | eqid 2735 | . . . . . . . . 9 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 19 | 6, 18 | ressplusg 17303 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
| 20 | 17, 19 | ax-mp 5 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑆) |
| 21 | 20 | eqcomi 2744 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑀) |
| 22 | 21 | oveqi 7416 | . . . . 5 ⊢ (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑀)𝑦) |
| 23 | 1, 2, 3, 4, 5, 6 | smndex1bas 18882 | . . . . . . . 8 ⊢ (Base‘𝑆) = 𝐵 |
| 24 | 1, 2, 3, 4, 5 | smndex1basss 18881 | . . . . . . . 8 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 25 | 23, 24 | eqsstri 4005 | . . . . . . 7 ⊢ (Base‘𝑆) ⊆ (Base‘𝑀) |
| 26 | ssel 3952 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑀))) | |
| 27 | ssel 3952 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑦 ∈ (Base‘𝑆) → 𝑦 ∈ (Base‘𝑀))) | |
| 28 | 26, 27 | anim12d 609 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))) |
| 29 | 25, 28 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
| 30 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 31 | 1, 30, 18 | efmndov 18857 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 32 | 29, 31 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 33 | 22, 32 | eqtrid 2782 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥 ∘ 𝑦)) |
| 34 | 11, 33 | symggrplem 18860 | . . 3 ⊢ ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑆)) → ((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐))) |
| 35 | 34 | rgen3 3189 | . 2 ⊢ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)) |
| 36 | 8, 9 | issgrp 18696 | . 2 ⊢ (𝑆 ∈ Smgrp ↔ (𝑆 ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)))) |
| 37 | 7, 35, 36 | mpbir2an 711 | 1 ⊢ 𝑆 ∈ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ∪ ciun 4967 ↦ cmpt 5201 ∘ ccom 5658 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕcn 12238 ℕ0cn0 12499 ..^cfzo 13669 mod cmo 13884 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 Mgmcmgm 18614 Smgrpcsgrp 18694 EndoFMndcefmnd 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-tset 17288 df-mgm 18616 df-sgrp 18695 df-efmnd 18845 |
| This theorem is referenced by: smndex1mnd 18886 |
| Copyright terms: Public domain | W3C validator |