| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1sgrp | Structured version Visualization version GIF version | ||
| Description: The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 2 | smndex1ibas.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 4 | smndex1ibas.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 5 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 6 | smndex1mgm.s | . . 3 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | smndex1mgm 18841 | . 2 ⊢ 𝑆 ∈ Mgm |
| 8 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 10 | 8, 9 | mgmcl 18577 | . . . . 5 ⊢ ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 11 | 7, 10 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 12 | snex 5394 | . . . . . . . . . 10 ⊢ {𝐼} ∈ V | |
| 13 | ovex 7423 | . . . . . . . . . . 11 ⊢ (0..^𝑁) ∈ V | |
| 14 | snex 5394 | . . . . . . . . . . 11 ⊢ {(𝐺‘𝑛)} ∈ V | |
| 15 | 13, 14 | iunex 7950 | . . . . . . . . . 10 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
| 16 | 12, 15 | unex 7723 | . . . . . . . . 9 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
| 17 | 5, 16 | eqeltri 2825 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
| 18 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 19 | 6, 18 | ressplusg 17261 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
| 20 | 17, 19 | ax-mp 5 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑆) |
| 21 | 20 | eqcomi 2739 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑀) |
| 22 | 21 | oveqi 7403 | . . . . 5 ⊢ (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑀)𝑦) |
| 23 | 1, 2, 3, 4, 5, 6 | smndex1bas 18840 | . . . . . . . 8 ⊢ (Base‘𝑆) = 𝐵 |
| 24 | 1, 2, 3, 4, 5 | smndex1basss 18839 | . . . . . . . 8 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 25 | 23, 24 | eqsstri 3996 | . . . . . . 7 ⊢ (Base‘𝑆) ⊆ (Base‘𝑀) |
| 26 | ssel 3943 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑀))) | |
| 27 | ssel 3943 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑦 ∈ (Base‘𝑆) → 𝑦 ∈ (Base‘𝑀))) | |
| 28 | 26, 27 | anim12d 609 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))) |
| 29 | 25, 28 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
| 30 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 31 | 1, 30, 18 | efmndov 18815 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 32 | 29, 31 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 33 | 22, 32 | eqtrid 2777 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥 ∘ 𝑦)) |
| 34 | 11, 33 | symggrplem 18818 | . . 3 ⊢ ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑆)) → ((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐))) |
| 35 | 34 | rgen3 3183 | . 2 ⊢ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)) |
| 36 | 8, 9 | issgrp 18654 | . 2 ⊢ (𝑆 ∈ Smgrp ↔ (𝑆 ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)))) |
| 37 | 7, 35, 36 | mpbir2an 711 | 1 ⊢ 𝑆 ∈ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 ∪ ciun 4958 ↦ cmpt 5191 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ..^cfzo 13622 mod cmo 13838 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 Mgmcmgm 18572 Smgrpcsgrp 18652 EndoFMndcefmnd 18802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-tset 17246 df-mgm 18574 df-sgrp 18653 df-efmnd 18803 |
| This theorem is referenced by: smndex1mnd 18844 |
| Copyright terms: Public domain | W3C validator |