![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1sgrp | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
2 | smndex1ibas.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | smndex1ibas.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
4 | smndex1ibas.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
5 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
6 | smndex1mgm.s | . . 3 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | smndex1mgm 18830 | . 2 ⊢ 𝑆 ∈ Mgm |
8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | 8, 9 | mgmcl 18574 | . . . . 5 ⊢ ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
11 | 7, 10 | mp3an1 1447 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
12 | snex 5431 | . . . . . . . . . 10 ⊢ {𝐼} ∈ V | |
13 | ovex 7445 | . . . . . . . . . . 11 ⊢ (0..^𝑁) ∈ V | |
14 | snex 5431 | . . . . . . . . . . 11 ⊢ {(𝐺‘𝑛)} ∈ V | |
15 | 13, 14 | iunex 7959 | . . . . . . . . . 10 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
16 | 12, 15 | unex 7737 | . . . . . . . . 9 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
17 | 5, 16 | eqeltri 2828 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
18 | eqid 2731 | . . . . . . . . 9 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
19 | 6, 18 | ressplusg 17242 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
20 | 17, 19 | ax-mp 5 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑆) |
21 | 20 | eqcomi 2740 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑀) |
22 | 21 | oveqi 7425 | . . . . 5 ⊢ (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑀)𝑦) |
23 | 1, 2, 3, 4, 5, 6 | smndex1bas 18829 | . . . . . . . 8 ⊢ (Base‘𝑆) = 𝐵 |
24 | 1, 2, 3, 4, 5 | smndex1basss 18828 | . . . . . . . 8 ⊢ 𝐵 ⊆ (Base‘𝑀) |
25 | 23, 24 | eqsstri 4016 | . . . . . . 7 ⊢ (Base‘𝑆) ⊆ (Base‘𝑀) |
26 | ssel 3975 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑀))) | |
27 | ssel 3975 | . . . . . . . 8 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → (𝑦 ∈ (Base‘𝑆) → 𝑦 ∈ (Base‘𝑀))) | |
28 | 26, 27 | anim12d 608 | . . . . . . 7 ⊢ ((Base‘𝑆) ⊆ (Base‘𝑀) → ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))) |
29 | 25, 28 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
30 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
31 | 1, 30, 18 | efmndov 18804 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
32 | 29, 31 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
33 | 22, 32 | eqtrid 2783 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥 ∘ 𝑦)) |
34 | 11, 33 | symggrplem 18807 | . . 3 ⊢ ((𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑆)) → ((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐))) |
35 | 34 | rgen3 3201 | . 2 ⊢ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)) |
36 | 8, 9 | issgrp 18651 | . 2 ⊢ (𝑆 ∈ Smgrp ↔ (𝑆 ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝑆)∀𝑏 ∈ (Base‘𝑆)∀𝑐 ∈ (Base‘𝑆)((𝑎(+g‘𝑆)𝑏)(+g‘𝑆)𝑐) = (𝑎(+g‘𝑆)(𝑏(+g‘𝑆)𝑐)))) |
37 | 7, 35, 36 | mpbir2an 708 | 1 ⊢ 𝑆 ∈ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ∪ cun 3946 ⊆ wss 3948 {csn 4628 ∪ ciun 4997 ↦ cmpt 5231 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7412 0cc0 11116 ℕcn 12219 ℕ0cn0 12479 ..^cfzo 13634 mod cmo 13841 Basecbs 17151 ↾s cress 17180 +gcplusg 17204 Mgmcmgm 18569 Smgrpcsgrp 18649 EndoFMndcefmnd 18791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-tset 17223 df-mgm 18571 df-sgrp 18650 df-efmnd 18792 |
This theorem is referenced by: smndex1mnd 18833 |
Copyright terms: Public domain | W3C validator |