Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmsgrp Structured version   Visualization version   GIF version

Theorem 2zrngmsgrp 48241
Description: R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmsgrp 𝑀 ∈ Smgrp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmsgrp
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
3 2zrngmmgm.1 . . 3 𝑀 = (mulGrp‘𝑅)
41, 2, 32zrngmmgm 48240 . 2 𝑀 ∈ Mgm
5 elrabi 3654 . . . . 5 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ)
6 elrabi 3654 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
7 elrabi 3654 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
85, 6, 73anim123i 1151 . . . 4 ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → (𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ))
9 zcn 12534 . . . . 5 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
10 zcn 12534 . . . . 5 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
11 zcn 12534 . . . . 5 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
129, 10, 113anim123i 1151 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ))
13 mulass 11156 . . . 4 ((𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 · 𝑦) · 𝑏) = (𝑎 · (𝑦 · 𝑏)))
148, 12, 133syl 18 . . 3 ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → ((𝑎 · 𝑦) · 𝑏) = (𝑎 · (𝑦 · 𝑏)))
1514rgen3 3182 . 2 𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 · 𝑦) · 𝑏) = (𝑎 · (𝑦 · 𝑏))
161, 22zrngbas 48230 . . . . 5 𝐸 = (Base‘𝑅)
173, 16mgpbas 20054 . . . 4 𝐸 = (Base‘𝑀)
181, 17eqtr3i 2754 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} = (Base‘𝑀)
191, 22zrngmul 48239 . . . 4 · = (.r𝑅)
203, 19mgpplusg 20053 . . 3 · = (+g𝑀)
2118, 20issgrp 18647 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 · 𝑦) · 𝑏) = (𝑎 · (𝑦 · 𝑏))))
224, 15, 21mpbir2an 711 1 𝑀 ∈ Smgrp
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cfv 6511  (class class class)co 7387  cc 11066   · cmul 11073  2c2 12241  cz 12529  Basecbs 17179  s cress 17200  Mgmcmgm 18565  Smgrpcsgrp 18645  mulGrpcmgp 20049  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-mgm 18567  df-sgrp 18646  df-mgp 20050  df-cnfld 21265
This theorem is referenced by:  2zrngALT  48242
  Copyright terms: Public domain W3C validator