Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0omnd Structured version   Visualization version   GIF version

Theorem xrge0omnd 31337
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.)
Assertion
Ref Expression
xrge0omnd (ℝ*𝑠s (0[,]+∞)) ∈ oMnd

Proof of Theorem xrge0omnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0cmn 20640 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
2 cmnmnd 19402 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
31, 2ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
4 ovex 7308 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ V
5 xrge0base 31294 . . . 4 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
6 xrge0le 31297 . . . 4 ≤ = (le‘(ℝ*𝑠s (0[,]+∞)))
7 eliccxr 13167 . . . . 5 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*)
87xrleidd 12886 . . . 4 (𝑥 ∈ (0[,]+∞) → 𝑥𝑥)
9 eliccxr 13167 . . . . 5 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
10 xrletri3 12888 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
1110biimprd 247 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
127, 9, 11syl2an 596 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
13 eliccxr 13167 . . . . 5 (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*)
14 xrletr 12892 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
157, 9, 13, 14syl3an 1159 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
164, 5, 6, 8, 12, 15isposi 18042 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Poset
17 xrletri 12887 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
187, 9, 17syl2an 596 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥𝑦𝑦𝑥))
1918rgen2 3120 . . 3 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦𝑦𝑥)
205, 6istos 18136 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦𝑦𝑥)))
2116, 19, 20mpbir2an 708 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Toset
22 xleadd1a 12987 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))
2322ex 413 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))
247, 9, 13, 23syl3an 1159 . . 3 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))
2524rgen3 3121 . 2 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))
26 xrge0plusg 31296 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
275, 26, 6isomnd 31327 . 2 ((ℝ*𝑠s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))))
283, 21, 25, 27mpbir3an 1340 1 (ℝ*𝑠s (0[,]+∞)) ∈ oMnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010   +𝑒 cxad 12846  [,]cicc 13082  s cress 16941  *𝑠cxrs 17211  Posetcpo 18025  Tosetctos 18134  Mndcmnd 18385  CMndccmn 19386  oMndcomnd 31323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-xadd 12849  df-icc 13086  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-xrs 17213  df-poset 18031  df-toset 18135  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-cmn 19388  df-omnd 31325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator