![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0omnd | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
Ref | Expression |
---|---|
xrge0omnd | β’ (β*π βΎs (0[,]+β)) β oMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 20987 | . . 3 β’ (β*π βΎs (0[,]+β)) β CMnd | |
2 | cmnmnd 19665 | . . 3 β’ ((β*π βΎs (0[,]+β)) β CMnd β (β*π βΎs (0[,]+β)) β Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ (β*π βΎs (0[,]+β)) β Mnd |
4 | ovex 7442 | . . . 4 β’ (β*π βΎs (0[,]+β)) β V | |
5 | xrge0base 32186 | . . . 4 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
6 | xrge0le 32189 | . . . 4 β’ β€ = (leβ(β*π βΎs (0[,]+β))) | |
7 | eliccxr 13412 | . . . . 5 β’ (π₯ β (0[,]+β) β π₯ β β*) | |
8 | 7 | xrleidd 13131 | . . . 4 β’ (π₯ β (0[,]+β) β π₯ β€ π₯) |
9 | eliccxr 13412 | . . . . 5 β’ (π¦ β (0[,]+β) β π¦ β β*) | |
10 | xrletri3 13133 | . . . . . 6 β’ ((π₯ β β* β§ π¦ β β*) β (π₯ = π¦ β (π₯ β€ π¦ β§ π¦ β€ π₯))) | |
11 | 10 | biimprd 247 | . . . . 5 β’ ((π₯ β β* β§ π¦ β β*) β ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦)) |
12 | 7, 9, 11 | syl2an 597 | . . . 4 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦)) |
13 | eliccxr 13412 | . . . . 5 β’ (π§ β (0[,]+β) β π§ β β*) | |
14 | xrletr 13137 | . . . . 5 β’ ((π₯ β β* β§ π¦ β β* β§ π§ β β*) β ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)) | |
15 | 7, 9, 13, 14 | syl3an 1161 | . . . 4 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β) β§ π§ β (0[,]+β)) β ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)) |
16 | 4, 5, 6, 8, 12, 15 | isposi 18277 | . . 3 β’ (β*π βΎs (0[,]+β)) β Poset |
17 | xrletri 13132 | . . . . 5 β’ ((π₯ β β* β§ π¦ β β*) β (π₯ β€ π¦ β¨ π¦ β€ π₯)) | |
18 | 7, 9, 17 | syl2an 597 | . . . 4 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (π₯ β€ π¦ β¨ π¦ β€ π₯)) |
19 | 18 | rgen2 3198 | . . 3 β’ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(π₯ β€ π¦ β¨ π¦ β€ π₯) |
20 | 5, 6 | istos 18371 | . . 3 β’ ((β*π βΎs (0[,]+β)) β Toset β ((β*π βΎs (0[,]+β)) β Poset β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(π₯ β€ π¦ β¨ π¦ β€ π₯))) |
21 | 16, 19, 20 | mpbir2an 710 | . 2 β’ (β*π βΎs (0[,]+β)) β Toset |
22 | xleadd1a 13232 | . . . . 5 β’ (((π₯ β β* β§ π¦ β β* β§ π§ β β*) β§ π₯ β€ π¦) β (π₯ +π π§) β€ (π¦ +π π§)) | |
23 | 22 | ex 414 | . . . 4 β’ ((π₯ β β* β§ π¦ β β* β§ π§ β β*) β (π₯ β€ π¦ β (π₯ +π π§) β€ (π¦ +π π§))) |
24 | 7, 9, 13, 23 | syl3an 1161 | . . 3 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β) β§ π§ β (0[,]+β)) β (π₯ β€ π¦ β (π₯ +π π§) β€ (π¦ +π π§))) |
25 | 24 | rgen3 3203 | . 2 β’ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)βπ§ β (0[,]+β)(π₯ β€ π¦ β (π₯ +π π§) β€ (π¦ +π π§)) |
26 | xrge0plusg 32188 | . . 3 β’ +π = (+gβ(β*π βΎs (0[,]+β))) | |
27 | 5, 26, 6 | isomnd 32219 | . 2 β’ ((β*π βΎs (0[,]+β)) β oMnd β ((β*π βΎs (0[,]+β)) β Mnd β§ (β*π βΎs (0[,]+β)) β Toset β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)βπ§ β (0[,]+β)(π₯ β€ π¦ β (π₯ +π π§) β€ (π¦ +π π§)))) |
28 | 3, 21, 25, 27 | mpbir3an 1342 | 1 β’ (β*π βΎs (0[,]+β)) β oMnd |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β¨ wo 846 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 class class class wbr 5149 (class class class)co 7409 0cc0 11110 +βcpnf 11245 β*cxr 11247 β€ cle 11249 +π cxad 13090 [,]cicc 13327 βΎs cress 17173 β*π cxrs 17446 Posetcpo 18260 Tosetctos 18369 Mndcmnd 18625 CMndccmn 19648 oMndcomnd 32215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-xadd 13093 df-icc 13331 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-tset 17216 df-ple 17217 df-ds 17219 df-0g 17387 df-xrs 17448 df-poset 18266 df-toset 18370 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-cmn 19650 df-omnd 32217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |