Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0omnd | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
Ref | Expression |
---|---|
xrge0omnd | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 20262 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
2 | cmnmnd 19043 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
4 | ovex 7206 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ V | |
5 | xrge0base 30874 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge0le 30877 | . . . 4 ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | eliccxr 12912 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*) | |
8 | 7 | xrleidd 12631 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ≤ 𝑥) |
9 | eliccxr 12912 | . . . . 5 ⊢ (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*) | |
10 | xrletri3 12633 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) | |
11 | 10 | biimprd 251 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | syl2an 599 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
13 | eliccxr 12912 | . . . . 5 ⊢ (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*) | |
14 | xrletr 12637 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
15 | 7, 9, 13, 14 | syl3an 1161 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
16 | 4, 5, 6, 8, 12, 15 | isposi 17685 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset |
17 | xrletri 12632 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | |
18 | 7, 9, 17 | syl2an 599 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
19 | 18 | rgen2 3116 | . . 3 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) |
20 | 5, 6 | istos 17764 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
21 | 16, 19, 20 | mpbir2an 711 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset |
22 | xleadd1a 12732 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) ∧ 𝑥 ≤ 𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) | |
23 | 22 | ex 416 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
24 | 7, 9, 13, 23 | syl3an 1161 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
25 | 24 | rgen3 3117 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) |
26 | xrge0plusg 30876 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
27 | 5, 26, 6 | isomnd 30907 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))) |
28 | 3, 21, 25, 27 | mpbir3an 1342 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 class class class wbr 5031 (class class class)co 7173 0cc0 10618 +∞cpnf 10753 ℝ*cxr 10755 ≤ cle 10757 +𝑒 cxad 12591 [,]cicc 12827 ↾s cress 16590 ℝ*𝑠cxrs 16879 Posetcpo 17669 Tosetctos 17762 Mndcmnd 18030 CMndccmn 19027 oMndcomnd 30903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-xadd 12594 df-icc 12831 df-fz 12985 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-tset 16690 df-ple 16691 df-ds 16693 df-0g 16821 df-xrs 16881 df-poset 17675 df-toset 17763 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-submnd 18076 df-cmn 19029 df-omnd 30905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |