Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0omnd | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
Ref | Expression |
---|---|
xrge0omnd | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 20552 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
2 | cmnmnd 19317 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
4 | ovex 7288 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ V | |
5 | xrge0base 31196 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge0le 31199 | . . . 4 ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | eliccxr 13096 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*) | |
8 | 7 | xrleidd 12815 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ≤ 𝑥) |
9 | eliccxr 13096 | . . . . 5 ⊢ (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*) | |
10 | xrletri3 12817 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) | |
11 | 10 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
13 | eliccxr 13096 | . . . . 5 ⊢ (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*) | |
14 | xrletr 12821 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
15 | 7, 9, 13, 14 | syl3an 1158 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
16 | 4, 5, 6, 8, 12, 15 | isposi 17957 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset |
17 | xrletri 12816 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | |
18 | 7, 9, 17 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
19 | 18 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) |
20 | 5, 6 | istos 18051 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
21 | 16, 19, 20 | mpbir2an 707 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset |
22 | xleadd1a 12916 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) ∧ 𝑥 ≤ 𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) | |
23 | 22 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
24 | 7, 9, 13, 23 | syl3an 1158 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
25 | 24 | rgen3 3127 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) |
26 | xrge0plusg 31198 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
27 | 5, 26, 6 | isomnd 31229 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))) |
28 | 3, 21, 25, 27 | mpbir3an 1339 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 +𝑒 cxad 12775 [,]cicc 13011 ↾s cress 16867 ℝ*𝑠cxrs 17128 Posetcpo 17940 Tosetctos 18049 Mndcmnd 18300 CMndccmn 19301 oMndcomnd 31225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-icc 13015 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-xrs 17130 df-poset 17946 df-toset 18050 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cmn 19303 df-omnd 31227 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |