![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0omnd | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
Ref | Expression |
---|---|
xrge0omnd | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 21444 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
2 | cmnmnd 19830 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
4 | ovex 7464 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ V | |
5 | xrge0base 32999 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge0le 33002 | . . . 4 ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | eliccxr 13472 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*) | |
8 | 7 | xrleidd 13191 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ≤ 𝑥) |
9 | eliccxr 13472 | . . . . 5 ⊢ (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*) | |
10 | xrletri3 13193 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) | |
11 | 10 | biimprd 248 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
13 | eliccxr 13472 | . . . . 5 ⊢ (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*) | |
14 | xrletr 13197 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
15 | 7, 9, 13, 14 | syl3an 1159 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
16 | 4, 5, 6, 8, 12, 15 | isposi 18382 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset |
17 | xrletri 13192 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | |
18 | 7, 9, 17 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
19 | 18 | rgen2 3197 | . . 3 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) |
20 | 5, 6 | istos 18476 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
21 | 16, 19, 20 | mpbir2an 711 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset |
22 | xleadd1a 13292 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) ∧ 𝑥 ≤ 𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) | |
23 | 22 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
24 | 7, 9, 13, 23 | syl3an 1159 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
25 | 24 | rgen3 3202 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) |
26 | xrge0plusg 33001 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
27 | 5, 26, 6 | isomnd 33061 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))) |
28 | 3, 21, 25, 27 | mpbir3an 1340 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 (class class class)co 7431 0cc0 11153 +∞cpnf 11290 ℝ*cxr 11292 ≤ cle 11294 +𝑒 cxad 13150 [,]cicc 13387 ↾s cress 17274 ℝ*𝑠cxrs 17547 Posetcpo 18365 Tosetctos 18474 Mndcmnd 18760 CMndccmn 19813 oMndcomnd 33057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-xadd 13153 df-icc 13391 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17488 df-xrs 17549 df-poset 18371 df-toset 18475 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-cmn 19815 df-omnd 33059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |