![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0omnd | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
Ref | Expression |
---|---|
xrge0omnd | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 21397 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
2 | cmnmnd 19790 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
4 | ovex 7456 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ V | |
5 | xrge0base 32872 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge0le 32875 | . . . 4 ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | eliccxr 13461 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*) | |
8 | 7 | xrleidd 13180 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ≤ 𝑥) |
9 | eliccxr 13461 | . . . . 5 ⊢ (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*) | |
10 | xrletri3 13182 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) | |
11 | 10 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | syl2an 594 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
13 | eliccxr 13461 | . . . . 5 ⊢ (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*) | |
14 | xrletr 13186 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
15 | 7, 9, 13, 14 | syl3an 1157 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
16 | 4, 5, 6, 8, 12, 15 | isposi 18344 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset |
17 | xrletri 13181 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | |
18 | 7, 9, 17 | syl2an 594 | . . . 4 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
19 | 18 | rgen2 3187 | . . 3 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) |
20 | 5, 6 | istos 18438 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
21 | 16, 19, 20 | mpbir2an 709 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset |
22 | xleadd1a 13281 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) ∧ 𝑥 ≤ 𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) | |
23 | 22 | ex 411 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
24 | 7, 9, 13, 23 | syl3an 1157 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))) |
25 | 24 | rgen3 3192 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)) |
26 | xrge0plusg 32874 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
27 | 5, 26, 6 | isomnd 32913 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))) |
28 | 3, 21, 25, 27 | mpbir3an 1338 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5152 (class class class)co 7423 0cc0 11154 +∞cpnf 11291 ℝ*cxr 11293 ≤ cle 11295 +𝑒 cxad 13139 [,]cicc 13376 ↾s cress 17237 ℝ*𝑠cxrs 17510 Posetcpo 18327 Tosetctos 18436 Mndcmnd 18722 CMndccmn 19773 oMndcomnd 32909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-xadd 13142 df-icc 13380 df-fz 13534 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-tset 17280 df-ple 17281 df-ds 17283 df-0g 17451 df-xrs 17512 df-poset 18333 df-toset 18437 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-cmn 19775 df-omnd 32911 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |