MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposi Structured version   Visualization version   GIF version

Theorem isposi 18042
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
isposi.k 𝐾 ∈ V
isposi.b 𝐵 = (Base‘𝐾)
isposi.l = (le‘𝐾)
isposi.1 (𝑥𝐵𝑥 𝑥)
isposi.2 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
isposi.3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
Assertion
Ref Expression
isposi 𝐾 ∈ Poset
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐾(𝑥,𝑦,𝑧)

Proof of Theorem isposi
StepHypRef Expression
1 isposi.k . 2 𝐾 ∈ V
2 isposi.1 . . . . 5 (𝑥𝐵𝑥 𝑥)
323ad2ant1 1132 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → 𝑥 𝑥)
4 isposi.2 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
543adant3 1131 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
6 isposi.3 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
73, 5, 63jca 1127 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
87rgen3 3121 . 2 𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
9 isposi.b . . 3 𝐵 = (Base‘𝐾)
10 isposi.l . . 3 = (le‘𝐾)
119, 10ispos 18032 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
121, 8, 11mpbir2an 708 1 𝐾 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-poset 18031
This theorem is referenced by:  isposix  18043  isposixOLD  18044  xrstos  31288  xrge0omnd  31337
  Copyright terms: Public domain W3C validator