![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isposi | Structured version Visualization version GIF version |
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
isposi.k | β’ πΎ β V |
isposi.b | β’ π΅ = (BaseβπΎ) |
isposi.l | β’ β€ = (leβπΎ) |
isposi.1 | β’ (π₯ β π΅ β π₯ β€ π₯) |
isposi.2 | β’ ((π₯ β π΅ β§ π¦ β π΅) β ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦)) |
isposi.3 | β’ ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)) |
Ref | Expression |
---|---|
isposi | β’ πΎ β Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isposi.k | . 2 β’ πΎ β V | |
2 | isposi.1 | . . . . 5 β’ (π₯ β π΅ β π₯ β€ π₯) | |
3 | 2 | 3ad2ant1 1132 | . . . 4 β’ ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β π₯ β€ π₯) |
4 | isposi.2 | . . . . 5 β’ ((π₯ β π΅ β§ π¦ β π΅) β ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦)) | |
5 | 4 | 3adant3 1131 | . . . 4 β’ ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦)) |
6 | isposi.3 | . . . 4 β’ ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)) | |
7 | 3, 5, 6 | 3jca 1127 | . . 3 β’ ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦) β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§))) |
8 | 7 | rgen3 3201 | . 2 β’ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦) β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)) |
9 | isposi.b | . . 3 β’ π΅ = (BaseβπΎ) | |
10 | isposi.l | . . 3 β’ β€ = (leβπΎ) | |
11 | 9, 10 | ispos 18277 | . 2 β’ (πΎ β Poset β (πΎ β V β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π₯) β π₯ = π¦) β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
12 | 1, 8, 11 | mpbir2an 708 | 1 β’ πΎ β Poset |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 Posetcpo 18270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-poset 18276 |
This theorem is referenced by: isposix 18288 isposixOLD 18289 xrstos 32612 xrge0omnd 32664 |
Copyright terms: Public domain | W3C validator |