![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isposi | Structured version Visualization version GIF version |
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
isposi.k | ⊢ 𝐾 ∈ V |
isposi.b | ⊢ 𝐵 = (Base‘𝐾) |
isposi.l | ⊢ ≤ = (le‘𝐾) |
isposi.1 | ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) |
isposi.2 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
isposi.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
Ref | Expression |
---|---|
isposi | ⊢ 𝐾 ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isposi.k | . 2 ⊢ 𝐾 ∈ V | |
2 | isposi.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) | |
3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
4 | isposi.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | |
5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
6 | isposi.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
7 | 3, 5, 6 | 3jca 1128 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
8 | 7 | rgen3 3210 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
9 | isposi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
10 | isposi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
11 | 9, 10 | ispos 18384 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
12 | 1, 8, 11 | mpbir2an 710 | 1 ⊢ 𝐾 ∈ Poset |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-poset 18383 |
This theorem is referenced by: isposix 18395 isposixOLD 18396 xrstos 32993 xrge0omnd 33061 |
Copyright terms: Public domain | W3C validator |