| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isposi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| isposi.k | ⊢ 𝐾 ∈ V |
| isposi.b | ⊢ 𝐵 = (Base‘𝐾) |
| isposi.l | ⊢ ≤ = (le‘𝐾) |
| isposi.1 | ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) |
| isposi.2 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| isposi.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| Ref | Expression |
|---|---|
| isposi | ⊢ 𝐾 ∈ Poset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isposi.k | . 2 ⊢ 𝐾 ∈ V | |
| 2 | isposi.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) | |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
| 4 | isposi.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | |
| 5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 6 | isposi.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
| 7 | 3, 5, 6 | 3jca 1128 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 8 | 7 | rgen3 3178 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 9 | isposi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | isposi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 11 | 9, 10 | ispos 18224 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 12 | 1, 8, 11 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ Poset |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 class class class wbr 5095 ‘cfv 6488 Basecbs 17124 lecple 17172 Posetcpo 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-poset 18223 |
| This theorem is referenced by: isposix 18234 xrge0omnd 21386 xrstos 33000 |
| Copyright terms: Public domain | W3C validator |