|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isposi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| isposi.k | ⊢ 𝐾 ∈ V | 
| isposi.b | ⊢ 𝐵 = (Base‘𝐾) | 
| isposi.l | ⊢ ≤ = (le‘𝐾) | 
| isposi.1 | ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) | 
| isposi.2 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | 
| isposi.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | 
| Ref | Expression | 
|---|---|
| isposi | ⊢ 𝐾 ∈ Poset | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isposi.k | . 2 ⊢ 𝐾 ∈ V | |
| 2 | isposi.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) | |
| 3 | 2 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ≤ 𝑥) | 
| 4 | isposi.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | |
| 5 | 4 | 3adant3 1133 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | 
| 6 | isposi.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
| 7 | 3, 5, 6 | 3jca 1129 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) | 
| 8 | 7 | rgen3 3204 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | 
| 9 | isposi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | isposi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 11 | 9, 10 | ispos 18360 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | 
| 12 | 1, 8, 11 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ Poset | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 Posetcpo 18353 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-poset 18359 | 
| This theorem is referenced by: isposix 18370 isposixOLD 18371 xrstos 33012 xrge0omnd 33088 | 
| Copyright terms: Public domain | W3C validator |