MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposi Structured version   Visualization version   GIF version

Theorem isposi 18291
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
isposi.k 𝐾 ∈ V
isposi.b 𝐵 = (Base‘𝐾)
isposi.l = (le‘𝐾)
isposi.1 (𝑥𝐵𝑥 𝑥)
isposi.2 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
isposi.3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
Assertion
Ref Expression
isposi 𝐾 ∈ Poset
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐾(𝑥,𝑦,𝑧)

Proof of Theorem isposi
StepHypRef Expression
1 isposi.k . 2 𝐾 ∈ V
2 isposi.1 . . . . 5 (𝑥𝐵𝑥 𝑥)
323ad2ant1 1133 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → 𝑥 𝑥)
4 isposi.2 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
543adant3 1132 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
6 isposi.3 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
73, 5, 63jca 1128 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
87rgen3 3183 . 2 𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
9 isposi.b . . 3 𝐵 = (Base‘𝐾)
10 isposi.l . . 3 = (le‘𝐾)
119, 10ispos 18282 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
121, 8, 11mpbir2an 711 1 𝐾 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-poset 18281
This theorem is referenced by:  isposix  18292  xrstos  32955  xrge0omnd  33032
  Copyright terms: Public domain W3C validator