MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnlem Structured version   Visualization version   GIF version

Theorem addcnlem 24871
Description: Lemma for addcn 24872, subcn 24873, and mulcn 24874. (Contributed by Mario Carneiro, 5-May-2014.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
addcn.2 + :(ℂ × ℂ)⟶ℂ
addcn.3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
Assertion
Ref Expression
addcnlem + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧,𝐽   + ,𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧

Proof of Theorem addcnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2 + :(ℂ × ℂ)⟶ℂ
2 addcn.3 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
323coml 1124 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4 ifcl 4578 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
54adantl 480 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
6 simpll1 1209 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑏 ∈ ℂ)
7 simprl 769 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
8 eqid 2726 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 24778 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑏𝑢)))
10 abssub 15331 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(𝑏𝑢)) = (abs‘(𝑢𝑏)))
119, 10eqtrd 2766 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
126, 7, 11syl2anc 582 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
1312breq1d 5163 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ↔ (abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧)))
147, 6subcld 11621 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑏) ∈ ℂ)
1514abscld 15441 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝑏)) ∈ ℝ)
16 simplrl 775 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ+)
1716rpred 13070 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ)
18 simplrr 776 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ+)
1918rpred 13070 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ)
20 ltmin 13227 . . . . . . . . . . . 12 (((abs‘(𝑢𝑏)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2115, 17, 19, 20syl3anc 1368 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2213, 21bitrd 278 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
23 simpl 481 . . . . . . . . . 10 (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧) → (abs‘(𝑢𝑏)) < 𝑦)
2422, 23biimtrdi 252 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) → (abs‘(𝑢𝑏)) < 𝑦))
25 simpll2 1210 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑐 ∈ ℂ)
26 simprr 771 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
278cnmetdval 24778 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑐𝑣)))
28 abssub 15331 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (abs‘(𝑐𝑣)) = (abs‘(𝑣𝑐)))
2927, 28eqtrd 2766 . . . . . . . . . . . . 13 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3025, 26, 29syl2anc 582 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3130breq1d 5163 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) ↔ (abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧)))
3226, 25subcld 11621 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝑐) ∈ ℂ)
3332abscld 15441 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝑐)) ∈ ℝ)
34 ltmin 13227 . . . . . . . . . . . 12 (((abs‘(𝑣𝑐)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3533, 17, 19, 34syl3anc 1368 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3631, 35bitrd 278 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
37 simpr 483 . . . . . . . . . 10 (((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘(𝑣𝑐)) < 𝑧)
3836, 37biimtrdi 252 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) → (abs‘(𝑣𝑐)) < 𝑧))
3924, 38anim12d 607 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
401fovcl 7554 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
416, 25, 40syl2anc 582 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏 + 𝑐) ∈ ℂ)
421fovcl 7554 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
4342adantl 480 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
448cnmetdval 24778 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))))
45 abssub 15331 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4644, 45eqtrd 2766 . . . . . . . . . . 11 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4741, 43, 46syl2anc 582 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4847breq1d 5163 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎 ↔ (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4948biimprd 247 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎 → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
5039, 49imim12d 81 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5150ralimdvva 3195 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
52 breq2 5157 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑏(abs ∘ − )𝑢) < 𝑥 ↔ (𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧)))
53 breq2 5157 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑐(abs ∘ − )𝑣) < 𝑥 ↔ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)))
5452, 53anbi12d 630 . . . . . . . . 9 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) ↔ ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧))))
5554imbi1d 340 . . . . . . . 8 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
56552ralbidv 3209 . . . . . . 7 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5756rspcev 3608 . . . . . 6 ((if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
585, 51, 57syl6an 682 . . . . 5 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5958rexlimdvva 3202 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
603, 59mpd 15 . . 3 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
6160rgen3 3193 . 2 𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)
62 cnxmet 24780 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 addcn.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
6463cnfldtopn 24789 . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
6564, 64, 64txmetcn 24548 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))))
6662, 62, 62, 65mp3an 1458 . 2 ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
671, 61, 66mpbir2an 709 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  ifcif 4533   class class class wbr 5153   × cxp 5680  ccom 5686  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  cr 11157   < clt 11298  cle 11299  cmin 11494  +crp 13028  abscabs 15239  TopOpenctopn 17436  ∞Metcxmet 21328  fldccnfld 21343   Cn ccn 23219   ×t ctx 23555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cn 23222  df-cnp 23223  df-tx 23557  df-hmeo 23750  df-xms 24317  df-tms 24319
This theorem is referenced by:  addcn  24872  subcn  24873  mulcn  24874  mpomulcn  24876
  Copyright terms: Public domain W3C validator