MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndsgrp Structured version   Visualization version   GIF version

Theorem efmndsgrp 18051
Description: The monoid of endofunctions on a class 𝐴 is a semigroup. (Contributed by AV, 28-Jan-2024.)
Hypothesis
Ref Expression
efmndmgm.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndsgrp 𝐺 ∈ Smgrp

Proof of Theorem efmndsgrp
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndmgm.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21efmndmgm 18050 . 2 𝐺 ∈ Mgm
3 eqid 2824 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2824 . . . . 5 (+g𝐺) = (+g𝐺)
51, 3, 4efmndcl 18047 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
61, 3, 4efmndov 18046 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
75, 6symggrplem 18049 . . 3 ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺) ∧ ∈ (Base‘𝐺)) → ((𝑓(+g𝐺)𝑔)(+g𝐺)) = (𝑓(+g𝐺)(𝑔(+g𝐺))))
87rgen3 3199 . 2 𝑓 ∈ (Base‘𝐺)∀𝑔 ∈ (Base‘𝐺)∀ ∈ (Base‘𝐺)((𝑓(+g𝐺)𝑔)(+g𝐺)) = (𝑓(+g𝐺)(𝑔(+g𝐺)))
93, 4issgrp 17902 . 2 (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑓 ∈ (Base‘𝐺)∀𝑔 ∈ (Base‘𝐺)∀ ∈ (Base‘𝐺)((𝑓(+g𝐺)𝑔)(+g𝐺)) = (𝑓(+g𝐺)(𝑔(+g𝐺)))))
102, 8, 9mpbir2an 710 1 𝐺 ∈ Smgrp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  wral 3133  cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  Mgmcmgm 17850  Smgrpcsgrp 17900  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-tset 16584  df-mgm 17852  df-sgrp 17901  df-efmnd 18034
This theorem is referenced by:  efmndmnd  18054
  Copyright terms: Public domain W3C validator