Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngasgrp Structured version   Visualization version   GIF version

Theorem 2zrngasgrp 44579
 Description: R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngasgrp 𝑅 ∈ Smgrp
Distinct variable group:   𝑥,𝑧,𝑅
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngasgrp
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamgm 44578 . 2 𝑅 ∈ Mgm
4 elrabi 3623 . . . . 5 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ)
5 elrabi 3623 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
6 elrabi 3623 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
74, 5, 63anim123i 1148 . . . 4 ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → (𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ))
8 zcn 11976 . . . . 5 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 11976 . . . . 5 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
10 zcn 11976 . . . . 5 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
118, 9, 103anim123i 1148 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ))
12 addass 10615 . . . 4 ((𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏)))
137, 11, 123syl 18 . . 3 ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏)))
1413rgen3 3169 . 2 𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏))
151, 22zrngbas 44575 . . . 4 𝐸 = (Base‘𝑅)
161, 15eqtr3i 2823 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} = (Base‘𝑅)
171, 22zrngadd 44576 . . 3 + = (+g𝑅)
1816, 17issgrp 17896 . 2 (𝑅 ∈ Smgrp ↔ (𝑅 ∈ Mgm ∧ ∀𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏))))
193, 14, 18mpbir2an 710 1 𝑅 ∈ Smgrp
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110  ‘cfv 6324  (class class class)co 7135  ℂcc 10526   + caddc 10531   · cmul 10533  2c2 11682  ℤcz 11971  Basecbs 16477   ↾s cress 16478  Mgmcmgm 17844  Smgrpcsgrp 17894  ℂfldccnfld 20094 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-addf 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-fz 12888  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-mgm 17846  df-sgrp 17895  df-cnfld 20095 This theorem is referenced by:  2zrngamnd  44580
 Copyright terms: Public domain W3C validator