![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngasgrp | Structured version Visualization version GIF version |
Description: R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
Ref | Expression |
---|---|
2zrngasgrp | ⊢ 𝑅 ∈ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngamgm 47658 | . 2 ⊢ 𝑅 ∈ Mgm |
4 | elrabi 3674 | . . . . 5 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
5 | elrabi 3674 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
6 | elrabi 3674 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
7 | 4, 5, 6 | 3anim123i 1148 | . . . 4 ⊢ ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → (𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ)) |
8 | zcn 12609 | . . . . 5 ⊢ (𝑎 ∈ ℤ → 𝑎 ∈ ℂ) | |
9 | zcn 12609 | . . . . 5 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
10 | zcn 12609 | . . . . 5 ⊢ (𝑏 ∈ ℤ → 𝑏 ∈ ℂ) | |
11 | 8, 9, 10 | 3anim123i 1148 | . . . 4 ⊢ ((𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ)) |
12 | addass 11236 | . . . 4 ⊢ ((𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏))) | |
13 | 7, 11, 12 | 3syl 18 | . . 3 ⊢ ((𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ∧ 𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}) → ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏))) |
14 | 13 | rgen3 3193 | . 2 ⊢ ∀𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏)) |
15 | 1, 2 | 2zrngbas 47655 | . . . 4 ⊢ 𝐸 = (Base‘𝑅) |
16 | 1, 15 | eqtr3i 2756 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} = (Base‘𝑅) |
17 | 1, 2 | 2zrngadd 47656 | . . 3 ⊢ + = (+g‘𝑅) |
18 | 16, 17 | issgrp 18708 | . 2 ⊢ (𝑅 ∈ Smgrp ↔ (𝑅 ∈ Mgm ∧ ∀𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}∀𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ((𝑎 + 𝑦) + 𝑏) = (𝑎 + (𝑦 + 𝑏)))) |
19 | 3, 14, 18 | mpbir2an 709 | 1 ⊢ 𝑅 ∈ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 {crab 3419 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 + caddc 11152 · cmul 11154 2c2 12313 ℤcz 12604 Basecbs 17208 ↾s cress 17237 Mgmcmgm 18626 Smgrpcsgrp 18706 ℂfldccnfld 21339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-mgm 18628 df-sgrp 18707 df-cnfld 21340 |
This theorem is referenced by: 2zrngamnd 47660 |
Copyright terms: Public domain | W3C validator |