HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcoi Structured version   Visualization version   GIF version

Theorem lnopcoi 32035
Description: The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopcoi (𝑆𝑇) ∈ LinOp

Proof of Theorem lnopcoi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 32001 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 32001 . . 3 𝑇: ℋ⟶ ℋ
52, 4hocofi 31798 . 2 (𝑆𝑇): ℋ⟶ ℋ
63lnopli 32000 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
76fveq2d 6924 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
8 id 22 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
94ffvelcdmi 7117 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
104ffvelcdmi 7117 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
111lnopli 32000 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
128, 9, 10, 11syl3an 1160 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
137, 12eqtrd 2780 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
14133expa 1118 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
15 hvmulcl 31045 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
16 hvaddcl 31044 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
1715, 16sylan 579 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
182, 4hocoi 31796 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
1917, 18syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
202, 4hocoi 31796 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
2120oveq2d 7464 . . . . . . 7 (𝑦 ∈ ℋ → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
2221adantl 481 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
232, 4hocoi 31796 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆𝑇)‘𝑧) = (𝑆‘(𝑇𝑧)))
2422, 23oveqan12d 7467 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
2514, 19, 243eqtr4d 2790 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
26253impa 1110 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
2726rgen3 3210 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))
28 ellnop 31890 . 2 ((𝑆𝑇) ∈ LinOp ↔ ((𝑆𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))))
295, 27, 28mpbir2an 710 1 (𝑆𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  chba 30951   + cva 30952   · csm 30953  LinOpclo 30979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-hilex 31031  ax-hfvadd 31032  ax-hfvmul 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-lnop 31873
This theorem is referenced by:  lnopco0i  32036  nmopcoi  32127  bdopcoi  32130  nmopcoadj0i  32135
  Copyright terms: Public domain W3C validator