HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcoi Structured version   Visualization version   GIF version

Theorem lnopcoi 31939
Description: The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopcoi (𝑆𝑇) ∈ LinOp

Proof of Theorem lnopcoi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 31905 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 31905 . . 3 𝑇: ℋ⟶ ℋ
52, 4hocofi 31702 . 2 (𝑆𝑇): ℋ⟶ ℋ
63lnopli 31904 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
76fveq2d 6865 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
8 id 22 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
94ffvelcdmi 7058 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
104ffvelcdmi 7058 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
111lnopli 31904 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
128, 9, 10, 11syl3an 1160 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
137, 12eqtrd 2765 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
14133expa 1118 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
15 hvmulcl 30949 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
16 hvaddcl 30948 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
1715, 16sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
182, 4hocoi 31700 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
1917, 18syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
202, 4hocoi 31700 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
2120oveq2d 7406 . . . . . . 7 (𝑦 ∈ ℋ → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
2221adantl 481 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
232, 4hocoi 31700 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆𝑇)‘𝑧) = (𝑆‘(𝑇𝑧)))
2422, 23oveqan12d 7409 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
2514, 19, 243eqtr4d 2775 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
26253impa 1109 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
2726rgen3 3183 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))
28 ellnop 31794 . 2 ((𝑆𝑇) ∈ LinOp ↔ ((𝑆𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))))
295, 27, 28mpbir2an 711 1 (𝑆𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  chba 30855   + cva 30856   · csm 30857  LinOpclo 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-hilex 30935  ax-hfvadd 30936  ax-hfvmul 30941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-lnop 31777
This theorem is referenced by:  lnopco0i  31940  nmopcoi  32031  bdopcoi  32034  nmopcoadj0i  32039
  Copyright terms: Public domain W3C validator