HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcoi Structured version   Visualization version   GIF version

Theorem lnopcoi 32032
Description: The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopcoi (𝑆𝑇) ∈ LinOp

Proof of Theorem lnopcoi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 31998 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 31998 . . 3 𝑇: ℋ⟶ ℋ
52, 4hocofi 31795 . 2 (𝑆𝑇): ℋ⟶ ℋ
63lnopli 31997 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
76fveq2d 6911 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
8 id 22 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
94ffvelcdmi 7103 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
104ffvelcdmi 7103 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
111lnopli 31997 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
128, 9, 10, 11syl3an 1159 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
137, 12eqtrd 2775 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
14133expa 1117 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
15 hvmulcl 31042 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
16 hvaddcl 31041 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
1715, 16sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
182, 4hocoi 31793 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
1917, 18syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝑆‘(𝑇‘((𝑥 · 𝑦) + 𝑧))))
202, 4hocoi 31793 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
2120oveq2d 7447 . . . . . . 7 (𝑦 ∈ ℋ → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
2221adantl 481 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑇)‘𝑦)) = (𝑥 · (𝑆‘(𝑇𝑦))))
232, 4hocoi 31793 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆𝑇)‘𝑧) = (𝑆‘(𝑇𝑧)))
2422, 23oveqan12d 7450 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)) = ((𝑥 · (𝑆‘(𝑇𝑦))) + (𝑆‘(𝑇𝑧))))
2514, 19, 243eqtr4d 2785 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
26253impa 1109 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧)))
2726rgen3 3202 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))
28 ellnop 31887 . 2 ((𝑆𝑇) ∈ LinOp ↔ ((𝑆𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆𝑇)‘𝑦)) + ((𝑆𝑇)‘𝑧))))
295, 27, 28mpbir2an 711 1 (𝑆𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  chba 30948   + cva 30949   · csm 30950  LinOpclo 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-hilex 31028  ax-hfvadd 31029  ax-hfvmul 31034
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-lnop 31870
This theorem is referenced by:  lnopco0i  32033  nmopcoi  32124  bdopcoi  32127  nmopcoadj0i  32132
  Copyright terms: Public domain W3C validator