| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringdid | Structured version Visualization version GIF version | ||
| Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| ringdid.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringdid.p | ⊢ + = (+g‘𝑅) |
| ringdid.m | ⊢ · = (.r‘𝑅) |
| ringdid.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringdid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringdid.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringdid.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringdid | ⊢ (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdid.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringdid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringdid.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringdid.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ringdid.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | ringdid.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 7 | ringdid.m | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | 5, 6, 7 | ringdi 20176 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| 9 | 1, 2, 3, 4, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 Ringcrg 20148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-ring 20150 |
| This theorem is referenced by: ringdi22 33188 rloccring 33227 zrhcntr 33975 |
| Copyright terms: Public domain | W3C validator |