Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringdid Structured version   Visualization version   GIF version

Theorem ringdid 33209
Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
ringdid.b 𝐵 = (Base‘𝑅)
ringdid.p + = (+g𝑅)
ringdid.m · = (.r𝑅)
ringdid.r (𝜑𝑅 ∈ Ring)
ringdid.x (𝜑𝑋𝐵)
ringdid.y (𝜑𝑌𝐵)
ringdid.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringdid (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))

Proof of Theorem ringdid
StepHypRef Expression
1 ringdid.r . 2 (𝜑𝑅 ∈ Ring)
2 ringdid.x . 2 (𝜑𝑋𝐵)
3 ringdid.y . 2 (𝜑𝑌𝐵)
4 ringdid.z . 2 (𝜑𝑍𝐵)
5 ringdid.b . . 3 𝐵 = (Base‘𝑅)
6 ringdid.p . . 3 + = (+g𝑅)
7 ringdid.m . . 3 · = (.r𝑅)
85, 6, 7ringdi 20287 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
91, 2, 3, 4, 8syl13anc 1372 1 (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-ring 20262
This theorem is referenced by:  ringdi22  33211  rloccring  33242
  Copyright terms: Public domain W3C validator