MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdid Structured version   Visualization version   GIF version

Theorem ringdid 20179
Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
ringdid.b 𝐵 = (Base‘𝑅)
ringdid.p + = (+g𝑅)
ringdid.m · = (.r𝑅)
ringdid.r (𝜑𝑅 ∈ Ring)
ringdid.x (𝜑𝑋𝐵)
ringdid.y (𝜑𝑌𝐵)
ringdid.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringdid (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))

Proof of Theorem ringdid
StepHypRef Expression
1 ringdid.r . 2 (𝜑𝑅 ∈ Ring)
2 ringdid.x . 2 (𝜑𝑋𝐵)
3 ringdid.y . 2 (𝜑𝑌𝐵)
4 ringdid.z . 2 (𝜑𝑍𝐵)
5 ringdid.b . . 3 𝐵 = (Base‘𝑅)
6 ringdid.p . . 3 + = (+g𝑅)
7 ringdid.m . . 3 · = (.r𝑅)
85, 6, 7ringdi 20177 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
91, 2, 3, 4, 8syl13anc 1374 1 (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-ring 20151
This theorem is referenced by:  ringdi22  33193  rloccring  33232  zrhcntr  33987
  Copyright terms: Public domain W3C validator