| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringdid | Structured version Visualization version GIF version | ||
| Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| ringdid.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringdid.p | ⊢ + = (+g‘𝑅) |
| ringdid.m | ⊢ · = (.r‘𝑅) |
| ringdid.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringdid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringdid.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringdid.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringdid | ⊢ (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdid.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringdid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringdid.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringdid.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ringdid.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | ringdid.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 7 | ringdid.m | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | 5, 6, 7 | ringdi 20177 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| 9 | 1, 2, 3, 4, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-ring 20151 |
| This theorem is referenced by: ringdi22 33193 rloccring 33232 zrhcntr 33987 |
| Copyright terms: Public domain | W3C validator |