| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringdi22 | Structured version Visualization version GIF version | ||
| Description: Expand the product of two sums in a ring. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ringdi22.1 | ⊢ 𝐵 = (Base‘𝑅) |
| ringdi22.2 | ⊢ + = (+g‘𝑅) |
| ringdi22.3 | ⊢ · = (.r‘𝑅) |
| ringdi22.4 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringdi22.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringdi22.6 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringdi22.7 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ringdi22.8 | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringdi22 | ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdi22.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringdi22.2 | . . 3 ⊢ + = (+g‘𝑅) | |
| 3 | ringdi22.3 | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | ringdi22.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | 4 | ringgrpd 20160 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 6 | ringdi22.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | ringdi22.6 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 5, 6, 7 | grpcld 18860 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 9 | ringdi22.7 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | ringdi22.8 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4, 8, 9, 10 | ringdid 20181 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇))) |
| 12 | 1, 2, 3, 4, 6, 7, 9 | ringdird 20182 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| 13 | 1, 2, 3, 4, 6, 7, 10 | ringdird 20182 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑇) = ((𝑋 · 𝑇) + (𝑌 · 𝑇))) |
| 14 | 12, 13 | oveq12d 7364 | . 2 ⊢ (𝜑 → (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| 15 | 11, 14 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Ringcrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ring 20153 |
| This theorem is referenced by: ssdifidlprm 33423 |
| Copyright terms: Public domain | W3C validator |