| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringdi22 | Structured version Visualization version GIF version | ||
| Description: Expand the product of two sums in a ring. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ringdi22.1 | ⊢ 𝐵 = (Base‘𝑅) |
| ringdi22.2 | ⊢ + = (+g‘𝑅) |
| ringdi22.3 | ⊢ · = (.r‘𝑅) |
| ringdi22.4 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringdi22.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringdi22.6 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringdi22.7 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ringdi22.8 | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringdi22 | ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdi22.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringdi22.2 | . . 3 ⊢ + = (+g‘𝑅) | |
| 3 | ringdi22.3 | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | ringdi22.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | 4 | ringgrpd 20158 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 6 | ringdi22.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | ringdi22.6 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 5, 6, 7 | grpcld 18886 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 9 | ringdi22.7 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | ringdi22.8 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4, 8, 9, 10 | ringdid 20179 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇))) |
| 12 | 1, 2, 3, 4, 6, 7, 9 | ringdird 20180 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| 13 | 1, 2, 3, 4, 6, 7, 10 | ringdird 20180 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑇) = ((𝑋 · 𝑇) + (𝑌 · 𝑇))) |
| 14 | 12, 13 | oveq12d 7408 | . 2 ⊢ (𝜑 → (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| 15 | 11, 14 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ring 20151 |
| This theorem is referenced by: ssdifidlprm 33436 |
| Copyright terms: Public domain | W3C validator |