![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringdi22 | Structured version Visualization version GIF version |
Description: Expand the product of two sums in a ring. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
ringdi22.1 | ⊢ 𝐵 = (Base‘𝑅) |
ringdi22.2 | ⊢ + = (+g‘𝑅) |
ringdi22.3 | ⊢ · = (.r‘𝑅) |
ringdi22.4 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringdi22.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringdi22.6 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringdi22.7 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ringdi22.8 | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
Ref | Expression |
---|---|
ringdi22 | ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdi22.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringdi22.2 | . . 3 ⊢ + = (+g‘𝑅) | |
3 | ringdi22.3 | . . 3 ⊢ · = (.r‘𝑅) | |
4 | ringdi22.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | 4 | ringgrpd 20263 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
6 | ringdi22.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | ringdi22.6 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 5, 6, 7 | grpcld 18981 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
9 | ringdi22.7 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | ringdi22.8 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 8, 9, 10 | ringdid 33201 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇))) |
12 | 1, 2, 3, 4, 6, 7, 9 | ringdird 33202 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
13 | 1, 2, 3, 4, 6, 7, 10 | ringdird 33202 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑇) = ((𝑋 · 𝑇) + (𝑌 · 𝑇))) |
14 | 12, 13 | oveq12d 7461 | . 2 ⊢ (𝜑 → (((𝑋 + 𝑌) · 𝑍) + ((𝑋 + 𝑌) · 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
15 | 11, 14 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 .rcmulr 17306 Ringcrg 20254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-ov 7446 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18970 df-ring 20256 |
This theorem is referenced by: ssdifidlprm 33443 |
Copyright terms: Public domain | W3C validator |