MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdird Structured version   Visualization version   GIF version

Theorem ringdird 20262
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
ringdid.b 𝐵 = (Base‘𝑅)
ringdid.p + = (+g𝑅)
ringdid.m · = (.r𝑅)
ringdid.r (𝜑𝑅 ∈ Ring)
ringdid.x (𝜑𝑋𝐵)
ringdid.y (𝜑𝑌𝐵)
ringdid.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringdird (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem ringdird
StepHypRef Expression
1 ringdid.r . 2 (𝜑𝑅 ∈ Ring)
2 ringdid.x . 2 (𝜑𝑋𝐵)
3 ringdid.y . 2 (𝜑𝑌𝐵)
4 ringdid.z . 2 (𝜑𝑍𝐵)
5 ringdid.b . . 3 𝐵 = (Base‘𝑅)
6 ringdid.p . . 3 + = (+g𝑅)
7 ringdid.m . . 3 · = (.r𝑅)
85, 6, 7ringdir 20260 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
91, 2, 3, 4, 8syl13anc 1373 1 (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Ringcrg 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-ring 20233
This theorem is referenced by:  psdpw  22175  ringdi22  33236  rloccring  33275  zrhcntr  33981
  Copyright terms: Public domain W3C validator