MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdird Structured version   Visualization version   GIF version

Theorem ringdird 20179
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
ringdid.b 𝐵 = (Base‘𝑅)
ringdid.p + = (+g𝑅)
ringdid.m · = (.r𝑅)
ringdid.r (𝜑𝑅 ∈ Ring)
ringdid.x (𝜑𝑋𝐵)
ringdid.y (𝜑𝑌𝐵)
ringdid.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringdird (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem ringdird
StepHypRef Expression
1 ringdid.r . 2 (𝜑𝑅 ∈ Ring)
2 ringdid.x . 2 (𝜑𝑋𝐵)
3 ringdid.y . 2 (𝜑𝑌𝐵)
4 ringdid.z . 2 (𝜑𝑍𝐵)
5 ringdid.b . . 3 𝐵 = (Base‘𝑅)
6 ringdid.p . . 3 + = (+g𝑅)
7 ringdid.m . . 3 · = (.r𝑅)
85, 6, 7ringdir 20177 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
91, 2, 3, 4, 8syl13anc 1374 1 (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  Ringcrg 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-ring 20150
This theorem is referenced by:  psdpw  22063  ringdi22  33188  rloccring  33227  zrhcntr  33975
  Copyright terms: Public domain W3C validator