Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhcntr Structured version   Visualization version   GIF version

Theorem zrhcntr 33956
Description: The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
zrhcntr.1 𝑀 = (mulGrp‘𝑅)
zrhcntr.2 𝐶 = (Cntr‘𝑀)
zrhcntr.3 𝐿 = (ℤRHom‘𝑅)
zrhcntr.4 (𝜑𝑅 ∈ Ring)
zrhcntr.5 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
zrhcntr (𝜑 → (𝐿𝑁) ∈ 𝐶)

Proof of Theorem zrhcntr
Dummy variables 𝑖 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . 4 (𝑚 = 𝑁 → (𝐿𝑚) = (𝐿𝑁))
21eleq1d 2819 . . 3 (𝑚 = 𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿𝑁) ∈ 𝐶))
3 fveq2 6875 . . . . . . 7 (𝑖 = 0 → (𝐿𝑖) = (𝐿‘0))
43eleq1d 2819 . . . . . 6 (𝑖 = 0 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘0) ∈ 𝐶))
5 fveq2 6875 . . . . . . 7 (𝑖 = 𝑛 → (𝐿𝑖) = (𝐿𝑛))
65eleq1d 2819 . . . . . 6 (𝑖 = 𝑛 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑛) ∈ 𝐶))
7 fveq2 6875 . . . . . . 7 (𝑖 = (𝑛 + 1) → (𝐿𝑖) = (𝐿‘(𝑛 + 1)))
87eleq1d 2819 . . . . . 6 (𝑖 = (𝑛 + 1) → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘(𝑛 + 1)) ∈ 𝐶))
9 fveq2 6875 . . . . . . 7 (𝑖 = 𝑚 → (𝐿𝑖) = (𝐿𝑚))
109eleq1d 2819 . . . . . 6 (𝑖 = 𝑚 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑚) ∈ 𝐶))
11 zrhcntr.4 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
12 zrhcntr.3 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑅)
13 eqid 2735 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
1412, 13zrh0 21472 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
1511, 14syl 17 . . . . . . . 8 (𝜑 → (𝐿‘0) = (0g𝑅))
16 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1716, 13ring0cl 20225 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1811, 17syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1915, 18eqeltrd 2834 . . . . . . 7 (𝜑 → (𝐿‘0) ∈ (Base‘𝑅))
20 eqid 2735 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2111adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2316, 20, 13, 21, 22ringlzd 20253 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
2416, 20, 13, 21, 22ringrzd 20254 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
2523, 24eqtr4d 2773 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(0g𝑅)))
2615oveq1d 7418 . . . . . . . . . 10 (𝜑 → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2815oveq2d 7419 . . . . . . . . . 10 (𝜑 → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
3025, 27, 293eqtr4d 2780 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
3130ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
32 zrhcntr.1 . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
3332, 16mgpbas 20103 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑀)
3432, 20mgpplusg 20102 . . . . . . . 8 (.r𝑅) = (+g𝑀)
35 zrhcntr.2 . . . . . . . 8 𝐶 = (Cntr‘𝑀)
3633, 34, 35elcntr 19311 . . . . . . 7 ((𝐿‘0) ∈ 𝐶 ↔ ((𝐿‘0) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0))))
3719, 31, 36sylanbrc 583 . . . . . 6 (𝜑 → (𝐿‘0) ∈ 𝐶)
3812zrhrhm 21470 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
39 rhmghm 20442 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
4011, 38, 393syl 18 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring GrpHom 𝑅))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝐿 ∈ (ℤring GrpHom 𝑅))
42 simplr 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℕ0)
4342nn0zd 12612 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℤ)
44 1zzd 12621 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 1 ∈ ℤ)
45 zringbas 21412 . . . . . . . . . 10 ℤ = (Base‘ℤring)
46 zringplusg 21413 . . . . . . . . . 10 + = (+g‘ℤring)
47 eqid 2735 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4845, 46, 47ghmlin 19202 . . . . . . . . 9 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
4941, 43, 44, 48syl3anc 1373 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
50 eqid 2735 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
5112, 50zrh1 21471 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
5211, 51syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑅))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘1) = (1r𝑅))
5453oveq2d 7419 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(𝐿‘1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5549, 54eqtrd 2770 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5611ringgrpd 20200 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑅 ∈ Grp)
5833cntrss 19312 . . . . . . . . . . . 12 (Cntr‘𝑀) ⊆ (Base‘𝑅)
5935, 58eqsstri 4005 . . . . . . . . . . 11 𝐶 ⊆ (Base‘𝑅)
6059a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ (Base‘𝑅))
6160sselda 3958 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿𝑛) ∈ (Base‘𝑅))
6216, 50ringidcl 20223 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6311, 62syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (1r𝑅) ∈ (Base‘𝑅))
6516, 47, 57, 61, 64grpcld 18928 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
6633, 34, 35cntri 19313 . . . . . . . . . . . 12 (((𝐿𝑛) ∈ 𝐶𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6766adantll 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6811ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
69 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7016, 20, 50, 68, 69ringlidmd 20230 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7116, 20, 50, 68, 69ringridmd 20231 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
7270, 71eqtr4d 2773 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
7367, 72oveq12d 7421 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7461adantr 480 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑛) ∈ (Base‘𝑅))
7568, 62syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
7616, 47, 20, 68, 74, 75, 69ringdird 20222 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)))
7716, 47, 20, 68, 69, 74, 75ringdid 20221 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7873, 76, 773eqtr4d 2780 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
7978ralrimiva 3132 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
8033, 34, 35elcntr 19311 . . . . . . . 8 (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶 ↔ (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅)))))
8165, 79, 80sylanbrc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶)
8255, 81eqeltrd 2834 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) ∈ 𝐶)
834, 6, 8, 10, 37, 82nn0indd 12688 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (𝐿𝑚) ∈ 𝐶)
8483ralrimiva 3132 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
8584adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
86 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
872, 85, 86rspcdva 3602 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
8845, 16rhmf 20443 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶(Base‘𝑅))
8911, 38, 883syl 18 . . . . 5 (𝜑𝐿:ℤ⟶(Base‘𝑅))
9089adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝐿:ℤ⟶(Base‘𝑅))
91 zrhcntr.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
9291adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
9390, 92ffvelcdmd 7074 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ (Base‘𝑅))
94 eqid 2735 . . . . . 6 (invg𝑅) = (invg𝑅)
9511ad2antrr 726 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
96 fveq2 6875 . . . . . . . . . . 11 (𝑚 = -𝑁 → (𝐿𝑚) = (𝐿‘-𝑁))
9796eleq1d 2819 . . . . . . . . . 10 (𝑚 = -𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿‘-𝑁) ∈ 𝐶))
9884adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
99 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
10097, 98, 99rspcdva 3602 . . . . . . . . 9 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ 𝐶)
10133, 34, 35elcntr 19311 . . . . . . . . 9 ((𝐿‘-𝑁) ∈ 𝐶 ↔ ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
102100, 101sylib 218 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
103102simpld 494 . . . . . . 7 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
104103adantr 480 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
105 simpr 484 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
10616, 20, 94, 95, 104, 105ringmneg1 20262 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
10791zcnd 12696 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108107ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 ∈ ℂ)
109108negnegd 11583 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = 𝑁)
11091znegcld 12697 . . . . . . . . . . 11 (𝜑 → -𝑁 ∈ ℤ)
111 zringinvg 21424 . . . . . . . . . . 11 (-𝑁 ∈ ℤ → --𝑁 = ((invg‘ℤring)‘-𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝜑 → --𝑁 = ((invg‘ℤring)‘-𝑁))
113112ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = ((invg‘ℤring)‘-𝑁))
114109, 113eqtr3d 2772 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 = ((invg‘ℤring)‘-𝑁))
115114fveq2d 6879 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = (𝐿‘((invg‘ℤring)‘-𝑁)))
11695, 38, 393syl 18 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
117110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → -𝑁 ∈ ℤ)
118 eqid 2735 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
11945, 118, 94ghminv 19204 . . . . . . . 8 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ -𝑁 ∈ ℤ) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
120116, 117, 119syl2anc 584 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
121115, 120eqtrd 2770 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = ((invg𝑅)‘(𝐿‘-𝑁)))
122121oveq1d 7418 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥))
12316, 20, 94, 95, 105, 104ringmneg2 20263 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
124121oveq2d 7419 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))))
125102simprd 495 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
126125r19.21bi 3234 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
127126fveq2d 6879 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
128123, 124, 1273eqtr4d 2780 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
129106, 122, 1283eqtr4d 2780 . . . 4 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
130129ralrimiva 3132 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
13133, 34, 35elcntr 19311 . . 3 ((𝐿𝑁) ∈ 𝐶 ↔ ((𝐿𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁))))
13293, 130, 131sylanbrc 583 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
133 elznn0 12601 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
13491, 133sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
135134simprd 495 . 2 (𝜑 → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
13687, 132, 135mpjaodan 960 1 (𝜑 → (𝐿𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wss 3926  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  -cneg 11465  0cn0 12499  cz 12586  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  0gc0g 17451  Grpcgrp 18914  invgcminusg 18915   GrpHom cghm 19193  Cntrccntr 19297  mulGrpcmgp 20098  1rcur 20139  Ringcrg 20191   RingHom crh 20427  ringczring 21405  ℤRHomczrh 21458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-seq 14018  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cntr 19299  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-zring 21406  df-zrh 21462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator