Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhcntr Structured version   Visualization version   GIF version

Theorem zrhcntr 33962
Description: The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
zrhcntr.1 𝑀 = (mulGrp‘𝑅)
zrhcntr.2 𝐶 = (Cntr‘𝑀)
zrhcntr.3 𝐿 = (ℤRHom‘𝑅)
zrhcntr.4 (𝜑𝑅 ∈ Ring)
zrhcntr.5 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
zrhcntr (𝜑 → (𝐿𝑁) ∈ 𝐶)

Proof of Theorem zrhcntr
Dummy variables 𝑖 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . 4 (𝑚 = 𝑁 → (𝐿𝑚) = (𝐿𝑁))
21eleq1d 2813 . . 3 (𝑚 = 𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿𝑁) ∈ 𝐶))
3 fveq2 6840 . . . . . . 7 (𝑖 = 0 → (𝐿𝑖) = (𝐿‘0))
43eleq1d 2813 . . . . . 6 (𝑖 = 0 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘0) ∈ 𝐶))
5 fveq2 6840 . . . . . . 7 (𝑖 = 𝑛 → (𝐿𝑖) = (𝐿𝑛))
65eleq1d 2813 . . . . . 6 (𝑖 = 𝑛 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑛) ∈ 𝐶))
7 fveq2 6840 . . . . . . 7 (𝑖 = (𝑛 + 1) → (𝐿𝑖) = (𝐿‘(𝑛 + 1)))
87eleq1d 2813 . . . . . 6 (𝑖 = (𝑛 + 1) → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘(𝑛 + 1)) ∈ 𝐶))
9 fveq2 6840 . . . . . . 7 (𝑖 = 𝑚 → (𝐿𝑖) = (𝐿𝑚))
109eleq1d 2813 . . . . . 6 (𝑖 = 𝑚 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑚) ∈ 𝐶))
11 zrhcntr.4 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
12 zrhcntr.3 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑅)
13 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
1412, 13zrh0 21455 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
1511, 14syl 17 . . . . . . . 8 (𝜑 → (𝐿‘0) = (0g𝑅))
16 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1716, 13ring0cl 20187 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1811, 17syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1915, 18eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐿‘0) ∈ (Base‘𝑅))
20 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2111adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2316, 20, 13, 21, 22ringlzd 20215 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
2416, 20, 13, 21, 22ringrzd 20216 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
2523, 24eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(0g𝑅)))
2615oveq1d 7384 . . . . . . . . . 10 (𝜑 → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2815oveq2d 7385 . . . . . . . . . 10 (𝜑 → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
3025, 27, 293eqtr4d 2774 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
3130ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
32 zrhcntr.1 . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
3332, 16mgpbas 20065 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑀)
3432, 20mgpplusg 20064 . . . . . . . 8 (.r𝑅) = (+g𝑀)
35 zrhcntr.2 . . . . . . . 8 𝐶 = (Cntr‘𝑀)
3633, 34, 35elcntr 19244 . . . . . . 7 ((𝐿‘0) ∈ 𝐶 ↔ ((𝐿‘0) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0))))
3719, 31, 36sylanbrc 583 . . . . . 6 (𝜑 → (𝐿‘0) ∈ 𝐶)
3812zrhrhm 21453 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
39 rhmghm 20404 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
4011, 38, 393syl 18 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring GrpHom 𝑅))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝐿 ∈ (ℤring GrpHom 𝑅))
42 simplr 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℕ0)
4342nn0zd 12531 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℤ)
44 1zzd 12540 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 1 ∈ ℤ)
45 zringbas 21395 . . . . . . . . . 10 ℤ = (Base‘ℤring)
46 zringplusg 21396 . . . . . . . . . 10 + = (+g‘ℤring)
47 eqid 2729 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4845, 46, 47ghmlin 19135 . . . . . . . . 9 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
4941, 43, 44, 48syl3anc 1373 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
50 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
5112, 50zrh1 21454 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
5211, 51syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑅))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘1) = (1r𝑅))
5453oveq2d 7385 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(𝐿‘1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5549, 54eqtrd 2764 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5611ringgrpd 20162 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑅 ∈ Grp)
5833cntrss 19245 . . . . . . . . . . . 12 (Cntr‘𝑀) ⊆ (Base‘𝑅)
5935, 58eqsstri 3990 . . . . . . . . . . 11 𝐶 ⊆ (Base‘𝑅)
6059a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ (Base‘𝑅))
6160sselda 3943 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿𝑛) ∈ (Base‘𝑅))
6216, 50ringidcl 20185 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6311, 62syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (1r𝑅) ∈ (Base‘𝑅))
6516, 47, 57, 61, 64grpcld 18861 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
6633, 34, 35cntri 19246 . . . . . . . . . . . 12 (((𝐿𝑛) ∈ 𝐶𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6766adantll 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6811ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
69 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7016, 20, 50, 68, 69ringlidmd 20192 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7116, 20, 50, 68, 69ringridmd 20193 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
7270, 71eqtr4d 2767 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
7367, 72oveq12d 7387 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7461adantr 480 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑛) ∈ (Base‘𝑅))
7568, 62syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
7616, 47, 20, 68, 74, 75, 69ringdird 20184 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)))
7716, 47, 20, 68, 69, 74, 75ringdid 20183 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7873, 76, 773eqtr4d 2774 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
7978ralrimiva 3125 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
8033, 34, 35elcntr 19244 . . . . . . . 8 (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶 ↔ (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅)))))
8165, 79, 80sylanbrc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶)
8255, 81eqeltrd 2828 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) ∈ 𝐶)
834, 6, 8, 10, 37, 82nn0indd 12607 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (𝐿𝑚) ∈ 𝐶)
8483ralrimiva 3125 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
8584adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
86 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
872, 85, 86rspcdva 3586 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
8845, 16rhmf 20405 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶(Base‘𝑅))
8911, 38, 883syl 18 . . . . 5 (𝜑𝐿:ℤ⟶(Base‘𝑅))
9089adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝐿:ℤ⟶(Base‘𝑅))
91 zrhcntr.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
9291adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
9390, 92ffvelcdmd 7039 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ (Base‘𝑅))
94 eqid 2729 . . . . . 6 (invg𝑅) = (invg𝑅)
9511ad2antrr 726 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
96 fveq2 6840 . . . . . . . . . . 11 (𝑚 = -𝑁 → (𝐿𝑚) = (𝐿‘-𝑁))
9796eleq1d 2813 . . . . . . . . . 10 (𝑚 = -𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿‘-𝑁) ∈ 𝐶))
9884adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
99 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
10097, 98, 99rspcdva 3586 . . . . . . . . 9 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ 𝐶)
10133, 34, 35elcntr 19244 . . . . . . . . 9 ((𝐿‘-𝑁) ∈ 𝐶 ↔ ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
102100, 101sylib 218 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
103102simpld 494 . . . . . . 7 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
104103adantr 480 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
105 simpr 484 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
10616, 20, 94, 95, 104, 105ringmneg1 20224 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
10791zcnd 12615 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108107ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 ∈ ℂ)
109108negnegd 11500 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = 𝑁)
11091znegcld 12616 . . . . . . . . . . 11 (𝜑 → -𝑁 ∈ ℤ)
111 zringinvg 21407 . . . . . . . . . . 11 (-𝑁 ∈ ℤ → --𝑁 = ((invg‘ℤring)‘-𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝜑 → --𝑁 = ((invg‘ℤring)‘-𝑁))
113112ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = ((invg‘ℤring)‘-𝑁))
114109, 113eqtr3d 2766 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 = ((invg‘ℤring)‘-𝑁))
115114fveq2d 6844 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = (𝐿‘((invg‘ℤring)‘-𝑁)))
11695, 38, 393syl 18 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
117110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → -𝑁 ∈ ℤ)
118 eqid 2729 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
11945, 118, 94ghminv 19137 . . . . . . . 8 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ -𝑁 ∈ ℤ) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
120116, 117, 119syl2anc 584 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
121115, 120eqtrd 2764 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = ((invg𝑅)‘(𝐿‘-𝑁)))
122121oveq1d 7384 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥))
12316, 20, 94, 95, 105, 104ringmneg2 20225 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
124121oveq2d 7385 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))))
125102simprd 495 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
126125r19.21bi 3227 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
127126fveq2d 6844 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
128123, 124, 1273eqtr4d 2774 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
129106, 122, 1283eqtr4d 2774 . . . 4 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
130129ralrimiva 3125 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
13133, 34, 35elcntr 19244 . . 3 ((𝐿𝑁) ∈ 𝐶 ↔ ((𝐿𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁))))
13293, 130, 131sylanbrc 583 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
133 elznn0 12520 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
13491, 133sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
135134simprd 495 . 2 (𝜑 → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
13687, 132, 135mpjaodan 960 1 (𝜑 → (𝐿𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wss 3911  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  -cneg 11382  0cn0 12418  cz 12505  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848   GrpHom cghm 19126  Cntrccntr 19230  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153   RingHom crh 20389  ringczring 21388  ℤRHomczrh 21441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cntr 19232  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-cnfld 21297  df-zring 21389  df-zrh 21445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator