Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhcntr Structured version   Visualization version   GIF version

Theorem zrhcntr 33941
Description: The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
zrhcntr.1 𝑀 = (mulGrp‘𝑅)
zrhcntr.2 𝐶 = (Cntr‘𝑀)
zrhcntr.3 𝐿 = (ℤRHom‘𝑅)
zrhcntr.4 (𝜑𝑅 ∈ Ring)
zrhcntr.5 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
zrhcntr (𝜑 → (𝐿𝑁) ∈ 𝐶)

Proof of Theorem zrhcntr
Dummy variables 𝑖 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑚 = 𝑁 → (𝐿𝑚) = (𝐿𝑁))
21eleq1d 2823 . . 3 (𝑚 = 𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿𝑁) ∈ 𝐶))
3 fveq2 6906 . . . . . . 7 (𝑖 = 0 → (𝐿𝑖) = (𝐿‘0))
43eleq1d 2823 . . . . . 6 (𝑖 = 0 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘0) ∈ 𝐶))
5 fveq2 6906 . . . . . . 7 (𝑖 = 𝑛 → (𝐿𝑖) = (𝐿𝑛))
65eleq1d 2823 . . . . . 6 (𝑖 = 𝑛 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑛) ∈ 𝐶))
7 fveq2 6906 . . . . . . 7 (𝑖 = (𝑛 + 1) → (𝐿𝑖) = (𝐿‘(𝑛 + 1)))
87eleq1d 2823 . . . . . 6 (𝑖 = (𝑛 + 1) → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘(𝑛 + 1)) ∈ 𝐶))
9 fveq2 6906 . . . . . . 7 (𝑖 = 𝑚 → (𝐿𝑖) = (𝐿𝑚))
109eleq1d 2823 . . . . . 6 (𝑖 = 𝑚 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑚) ∈ 𝐶))
11 zrhcntr.4 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
12 zrhcntr.3 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑅)
13 eqid 2734 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
1412, 13zrh0 21541 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
1511, 14syl 17 . . . . . . . 8 (𝜑 → (𝐿‘0) = (0g𝑅))
16 eqid 2734 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1716, 13ring0cl 20280 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1811, 17syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1915, 18eqeltrd 2838 . . . . . . 7 (𝜑 → (𝐿‘0) ∈ (Base‘𝑅))
20 eqid 2734 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2111adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2316, 20, 13, 21, 22ringlzd 20308 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
2416, 20, 13, 21, 22ringrzd 20309 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
2523, 24eqtr4d 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(0g𝑅)))
2615oveq1d 7445 . . . . . . . . . 10 (𝜑 → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2815oveq2d 7446 . . . . . . . . . 10 (𝜑 → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
3025, 27, 293eqtr4d 2784 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
3130ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
32 zrhcntr.1 . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
3332, 16mgpbas 20157 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑀)
3432, 20mgpplusg 20155 . . . . . . . 8 (.r𝑅) = (+g𝑀)
35 zrhcntr.2 . . . . . . . 8 𝐶 = (Cntr‘𝑀)
3633, 34, 35elcntr 19360 . . . . . . 7 ((𝐿‘0) ∈ 𝐶 ↔ ((𝐿‘0) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0))))
3719, 31, 36sylanbrc 583 . . . . . 6 (𝜑 → (𝐿‘0) ∈ 𝐶)
3812zrhrhm 21539 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
39 rhmghm 20500 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
4011, 38, 393syl 18 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring GrpHom 𝑅))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝐿 ∈ (ℤring GrpHom 𝑅))
42 simplr 769 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℕ0)
4342nn0zd 12636 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℤ)
44 1zzd 12645 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 1 ∈ ℤ)
45 zringbas 21481 . . . . . . . . . 10 ℤ = (Base‘ℤring)
46 zringplusg 21482 . . . . . . . . . 10 + = (+g‘ℤring)
47 eqid 2734 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4845, 46, 47ghmlin 19251 . . . . . . . . 9 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
4941, 43, 44, 48syl3anc 1370 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
50 eqid 2734 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
5112, 50zrh1 21540 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
5211, 51syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑅))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘1) = (1r𝑅))
5453oveq2d 7446 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(𝐿‘1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5549, 54eqtrd 2774 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5611ringgrpd 20259 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑅 ∈ Grp)
5833cntrss 19361 . . . . . . . . . . . 12 (Cntr‘𝑀) ⊆ (Base‘𝑅)
5935, 58eqsstri 4029 . . . . . . . . . . 11 𝐶 ⊆ (Base‘𝑅)
6059a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ (Base‘𝑅))
6160sselda 3994 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿𝑛) ∈ (Base‘𝑅))
6216, 50ringidcl 20279 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6311, 62syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (1r𝑅) ∈ (Base‘𝑅))
6516, 47, 57, 61, 64grpcld 18977 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
6633, 34, 35cntri 19362 . . . . . . . . . . . 12 (((𝐿𝑛) ∈ 𝐶𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6766adantll 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6811ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
69 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7016, 20, 50, 68, 69ringlidmd 20285 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7116, 20, 50, 68, 69ringridmd 20286 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
7270, 71eqtr4d 2777 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
7367, 72oveq12d 7448 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7461adantr 480 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑛) ∈ (Base‘𝑅))
7568, 62syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
7616, 47, 20, 68, 74, 75, 69ringdird 33219 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)))
7716, 47, 20, 68, 69, 74, 75ringdid 33218 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7873, 76, 773eqtr4d 2784 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
7978ralrimiva 3143 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
8033, 34, 35elcntr 19360 . . . . . . . 8 (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶 ↔ (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅)))))
8165, 79, 80sylanbrc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶)
8255, 81eqeltrd 2838 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) ∈ 𝐶)
834, 6, 8, 10, 37, 82nn0indd 12712 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (𝐿𝑚) ∈ 𝐶)
8483ralrimiva 3143 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
8584adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
86 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
872, 85, 86rspcdva 3622 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
8845, 16rhmf 20501 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶(Base‘𝑅))
8911, 38, 883syl 18 . . . . 5 (𝜑𝐿:ℤ⟶(Base‘𝑅))
9089adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝐿:ℤ⟶(Base‘𝑅))
91 zrhcntr.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
9291adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
9390, 92ffvelcdmd 7104 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ (Base‘𝑅))
94 eqid 2734 . . . . . 6 (invg𝑅) = (invg𝑅)
9511ad2antrr 726 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
96 fveq2 6906 . . . . . . . . . . 11 (𝑚 = -𝑁 → (𝐿𝑚) = (𝐿‘-𝑁))
9796eleq1d 2823 . . . . . . . . . 10 (𝑚 = -𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿‘-𝑁) ∈ 𝐶))
9884adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
99 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
10097, 98, 99rspcdva 3622 . . . . . . . . 9 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ 𝐶)
10133, 34, 35elcntr 19360 . . . . . . . . 9 ((𝐿‘-𝑁) ∈ 𝐶 ↔ ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
102100, 101sylib 218 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
103102simpld 494 . . . . . . 7 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
104103adantr 480 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
105 simpr 484 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
10616, 20, 94, 95, 104, 105ringmneg1 20317 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
10791zcnd 12720 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108107ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 ∈ ℂ)
109108negnegd 11608 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = 𝑁)
11091znegcld 12721 . . . . . . . . . . 11 (𝜑 → -𝑁 ∈ ℤ)
111 zringinvg 21493 . . . . . . . . . . 11 (-𝑁 ∈ ℤ → --𝑁 = ((invg‘ℤring)‘-𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝜑 → --𝑁 = ((invg‘ℤring)‘-𝑁))
113112ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = ((invg‘ℤring)‘-𝑁))
114109, 113eqtr3d 2776 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 = ((invg‘ℤring)‘-𝑁))
115114fveq2d 6910 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = (𝐿‘((invg‘ℤring)‘-𝑁)))
11695, 38, 393syl 18 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
117110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → -𝑁 ∈ ℤ)
118 eqid 2734 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
11945, 118, 94ghminv 19253 . . . . . . . 8 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ -𝑁 ∈ ℤ) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
120116, 117, 119syl2anc 584 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
121115, 120eqtrd 2774 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = ((invg𝑅)‘(𝐿‘-𝑁)))
122121oveq1d 7445 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥))
12316, 20, 94, 95, 105, 104ringmneg2 20318 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
124121oveq2d 7446 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))))
125102simprd 495 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
126125r19.21bi 3248 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
127126fveq2d 6910 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
128123, 124, 1273eqtr4d 2784 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
129106, 122, 1283eqtr4d 2784 . . . 4 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
130129ralrimiva 3143 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
13133, 34, 35elcntr 19360 . . 3 ((𝐿𝑁) ∈ 𝐶 ↔ ((𝐿𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁))))
13293, 130, 131sylanbrc 583 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
133 elznn0 12625 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
13491, 133sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
135134simprd 495 . 2 (𝜑 → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
13687, 132, 135mpjaodan 960 1 (𝜑 → (𝐿𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wral 3058  wss 3962  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  -cneg 11490  0cn0 12523  cz 12610  Basecbs 17244  +gcplusg 17297  .rcmulr 17298  0gc0g 17485  Grpcgrp 18963  invgcminusg 18964   GrpHom cghm 19242  Cntrccntr 19346  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250   RingHom crh 20485  ringczring 21474  ℤRHomczrh 21527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-seq 14039  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-grp 18966  df-minusg 18967  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cntr 19348  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-cnfld 21382  df-zring 21475  df-zrh 21531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator