Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhcntr Structured version   Visualization version   GIF version

Theorem zrhcntr 33955
Description: The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
zrhcntr.1 𝑀 = (mulGrp‘𝑅)
zrhcntr.2 𝐶 = (Cntr‘𝑀)
zrhcntr.3 𝐿 = (ℤRHom‘𝑅)
zrhcntr.4 (𝜑𝑅 ∈ Ring)
zrhcntr.5 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
zrhcntr (𝜑 → (𝐿𝑁) ∈ 𝐶)

Proof of Theorem zrhcntr
Dummy variables 𝑖 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6886 . . . 4 (𝑚 = 𝑁 → (𝐿𝑚) = (𝐿𝑁))
21eleq1d 2818 . . 3 (𝑚 = 𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿𝑁) ∈ 𝐶))
3 fveq2 6886 . . . . . . 7 (𝑖 = 0 → (𝐿𝑖) = (𝐿‘0))
43eleq1d 2818 . . . . . 6 (𝑖 = 0 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘0) ∈ 𝐶))
5 fveq2 6886 . . . . . . 7 (𝑖 = 𝑛 → (𝐿𝑖) = (𝐿𝑛))
65eleq1d 2818 . . . . . 6 (𝑖 = 𝑛 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑛) ∈ 𝐶))
7 fveq2 6886 . . . . . . 7 (𝑖 = (𝑛 + 1) → (𝐿𝑖) = (𝐿‘(𝑛 + 1)))
87eleq1d 2818 . . . . . 6 (𝑖 = (𝑛 + 1) → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘(𝑛 + 1)) ∈ 𝐶))
9 fveq2 6886 . . . . . . 7 (𝑖 = 𝑚 → (𝐿𝑖) = (𝐿𝑚))
109eleq1d 2818 . . . . . 6 (𝑖 = 𝑚 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑚) ∈ 𝐶))
11 zrhcntr.4 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
12 zrhcntr.3 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑅)
13 eqid 2734 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
1412, 13zrh0 21487 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
1511, 14syl 17 . . . . . . . 8 (𝜑 → (𝐿‘0) = (0g𝑅))
16 eqid 2734 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1716, 13ring0cl 20233 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1811, 17syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1915, 18eqeltrd 2833 . . . . . . 7 (𝜑 → (𝐿‘0) ∈ (Base‘𝑅))
20 eqid 2734 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2111adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2316, 20, 13, 21, 22ringlzd 20261 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
2416, 20, 13, 21, 22ringrzd 20262 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
2523, 24eqtr4d 2772 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(0g𝑅)))
2615oveq1d 7428 . . . . . . . . . 10 (𝜑 → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2815oveq2d 7429 . . . . . . . . . 10 (𝜑 → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
3025, 27, 293eqtr4d 2779 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
3130ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
32 zrhcntr.1 . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
3332, 16mgpbas 20111 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑀)
3432, 20mgpplusg 20110 . . . . . . . 8 (.r𝑅) = (+g𝑀)
35 zrhcntr.2 . . . . . . . 8 𝐶 = (Cntr‘𝑀)
3633, 34, 35elcntr 19318 . . . . . . 7 ((𝐿‘0) ∈ 𝐶 ↔ ((𝐿‘0) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0))))
3719, 31, 36sylanbrc 583 . . . . . 6 (𝜑 → (𝐿‘0) ∈ 𝐶)
3812zrhrhm 21485 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
39 rhmghm 20453 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
4011, 38, 393syl 18 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring GrpHom 𝑅))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝐿 ∈ (ℤring GrpHom 𝑅))
42 simplr 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℕ0)
4342nn0zd 12622 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℤ)
44 1zzd 12631 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 1 ∈ ℤ)
45 zringbas 21427 . . . . . . . . . 10 ℤ = (Base‘ℤring)
46 zringplusg 21428 . . . . . . . . . 10 + = (+g‘ℤring)
47 eqid 2734 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4845, 46, 47ghmlin 19209 . . . . . . . . 9 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
4941, 43, 44, 48syl3anc 1372 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
50 eqid 2734 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
5112, 50zrh1 21486 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
5211, 51syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑅))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘1) = (1r𝑅))
5453oveq2d 7429 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(𝐿‘1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5549, 54eqtrd 2769 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5611ringgrpd 20208 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑅 ∈ Grp)
5833cntrss 19319 . . . . . . . . . . . 12 (Cntr‘𝑀) ⊆ (Base‘𝑅)
5935, 58eqsstri 4010 . . . . . . . . . . 11 𝐶 ⊆ (Base‘𝑅)
6059a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ (Base‘𝑅))
6160sselda 3963 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿𝑛) ∈ (Base‘𝑅))
6216, 50ringidcl 20231 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6311, 62syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (1r𝑅) ∈ (Base‘𝑅))
6516, 47, 57, 61, 64grpcld 18935 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
6633, 34, 35cntri 19320 . . . . . . . . . . . 12 (((𝐿𝑛) ∈ 𝐶𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6766adantll 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6811ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
69 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7016, 20, 50, 68, 69ringlidmd 20238 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7116, 20, 50, 68, 69ringridmd 20239 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
7270, 71eqtr4d 2772 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
7367, 72oveq12d 7431 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7461adantr 480 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑛) ∈ (Base‘𝑅))
7568, 62syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
7616, 47, 20, 68, 74, 75, 69ringdird 20230 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)))
7716, 47, 20, 68, 69, 74, 75ringdid 20229 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7873, 76, 773eqtr4d 2779 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
7978ralrimiva 3133 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
8033, 34, 35elcntr 19318 . . . . . . . 8 (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶 ↔ (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅)))))
8165, 79, 80sylanbrc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶)
8255, 81eqeltrd 2833 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) ∈ 𝐶)
834, 6, 8, 10, 37, 82nn0indd 12698 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (𝐿𝑚) ∈ 𝐶)
8483ralrimiva 3133 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
8584adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
86 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
872, 85, 86rspcdva 3606 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
8845, 16rhmf 20454 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶(Base‘𝑅))
8911, 38, 883syl 18 . . . . 5 (𝜑𝐿:ℤ⟶(Base‘𝑅))
9089adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝐿:ℤ⟶(Base‘𝑅))
91 zrhcntr.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
9291adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
9390, 92ffvelcdmd 7085 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ (Base‘𝑅))
94 eqid 2734 . . . . . 6 (invg𝑅) = (invg𝑅)
9511ad2antrr 726 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
96 fveq2 6886 . . . . . . . . . . 11 (𝑚 = -𝑁 → (𝐿𝑚) = (𝐿‘-𝑁))
9796eleq1d 2818 . . . . . . . . . 10 (𝑚 = -𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿‘-𝑁) ∈ 𝐶))
9884adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
99 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
10097, 98, 99rspcdva 3606 . . . . . . . . 9 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ 𝐶)
10133, 34, 35elcntr 19318 . . . . . . . . 9 ((𝐿‘-𝑁) ∈ 𝐶 ↔ ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
102100, 101sylib 218 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
103102simpld 494 . . . . . . 7 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
104103adantr 480 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
105 simpr 484 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
10616, 20, 94, 95, 104, 105ringmneg1 20270 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
10791zcnd 12706 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108107ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 ∈ ℂ)
109108negnegd 11593 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = 𝑁)
11091znegcld 12707 . . . . . . . . . . 11 (𝜑 → -𝑁 ∈ ℤ)
111 zringinvg 21439 . . . . . . . . . . 11 (-𝑁 ∈ ℤ → --𝑁 = ((invg‘ℤring)‘-𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝜑 → --𝑁 = ((invg‘ℤring)‘-𝑁))
113112ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = ((invg‘ℤring)‘-𝑁))
114109, 113eqtr3d 2771 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 = ((invg‘ℤring)‘-𝑁))
115114fveq2d 6890 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = (𝐿‘((invg‘ℤring)‘-𝑁)))
11695, 38, 393syl 18 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
117110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → -𝑁 ∈ ℤ)
118 eqid 2734 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
11945, 118, 94ghminv 19211 . . . . . . . 8 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ -𝑁 ∈ ℤ) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
120116, 117, 119syl2anc 584 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
121115, 120eqtrd 2769 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = ((invg𝑅)‘(𝐿‘-𝑁)))
122121oveq1d 7428 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥))
12316, 20, 94, 95, 105, 104ringmneg2 20271 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
124121oveq2d 7429 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))))
125102simprd 495 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
126125r19.21bi 3237 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
127126fveq2d 6890 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
128123, 124, 1273eqtr4d 2779 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
129106, 122, 1283eqtr4d 2779 . . . 4 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
130129ralrimiva 3133 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
13133, 34, 35elcntr 19318 . . 3 ((𝐿𝑁) ∈ 𝐶 ↔ ((𝐿𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁))))
13293, 130, 131sylanbrc 583 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
133 elznn0 12611 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
13491, 133sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
135134simprd 495 . 2 (𝜑 → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
13687, 132, 135mpjaodan 960 1 (𝜑 → (𝐿𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  wss 3931  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140  -cneg 11475  0cn0 12509  cz 12596  Basecbs 17230  +gcplusg 17274  .rcmulr 17275  0gc0g 17456  Grpcgrp 18921  invgcminusg 18922   GrpHom cghm 19200  Cntrccntr 19304  mulGrpcmgp 20106  1rcur 20147  Ringcrg 20199   RingHom crh 20438  ringczring 21420  ℤRHomczrh 21473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-seq 14025  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cntr 19306  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-rhm 20441  df-subrng 20515  df-subrg 20539  df-cnfld 21328  df-zring 21421  df-zrh 21477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator