Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhcntr Structured version   Visualization version   GIF version

Theorem zrhcntr 33962
Description: The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
zrhcntr.1 𝑀 = (mulGrp‘𝑅)
zrhcntr.2 𝐶 = (Cntr‘𝑀)
zrhcntr.3 𝐿 = (ℤRHom‘𝑅)
zrhcntr.4 (𝜑𝑅 ∈ Ring)
zrhcntr.5 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
zrhcntr (𝜑 → (𝐿𝑁) ∈ 𝐶)

Proof of Theorem zrhcntr
Dummy variables 𝑖 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑚 = 𝑁 → (𝐿𝑚) = (𝐿𝑁))
21eleq1d 2813 . . 3 (𝑚 = 𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿𝑁) ∈ 𝐶))
3 fveq2 6822 . . . . . . 7 (𝑖 = 0 → (𝐿𝑖) = (𝐿‘0))
43eleq1d 2813 . . . . . 6 (𝑖 = 0 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘0) ∈ 𝐶))
5 fveq2 6822 . . . . . . 7 (𝑖 = 𝑛 → (𝐿𝑖) = (𝐿𝑛))
65eleq1d 2813 . . . . . 6 (𝑖 = 𝑛 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑛) ∈ 𝐶))
7 fveq2 6822 . . . . . . 7 (𝑖 = (𝑛 + 1) → (𝐿𝑖) = (𝐿‘(𝑛 + 1)))
87eleq1d 2813 . . . . . 6 (𝑖 = (𝑛 + 1) → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿‘(𝑛 + 1)) ∈ 𝐶))
9 fveq2 6822 . . . . . . 7 (𝑖 = 𝑚 → (𝐿𝑖) = (𝐿𝑚))
109eleq1d 2813 . . . . . 6 (𝑖 = 𝑚 → ((𝐿𝑖) ∈ 𝐶 ↔ (𝐿𝑚) ∈ 𝐶))
11 zrhcntr.4 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
12 zrhcntr.3 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑅)
13 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
1412, 13zrh0 21420 . . . . . . . . 9 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
1511, 14syl 17 . . . . . . . 8 (𝜑 → (𝐿‘0) = (0g𝑅))
16 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1716, 13ring0cl 20152 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1811, 17syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1915, 18eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐿‘0) ∈ (Base‘𝑅))
20 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2111adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
2316, 20, 13, 21, 22ringlzd 20180 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
2416, 20, 13, 21, 22ringrzd 20181 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
2523, 24eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(0g𝑅)))
2615oveq1d 7364 . . . . . . . . . 10 (𝜑 → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2726adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = ((0g𝑅)(.r𝑅)𝑥))
2815oveq2d 7365 . . . . . . . . . 10 (𝜑 → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿‘0)) = (𝑥(.r𝑅)(0g𝑅)))
3025, 27, 293eqtr4d 2774 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
3130ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0)))
32 zrhcntr.1 . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
3332, 16mgpbas 20030 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑀)
3432, 20mgpplusg 20029 . . . . . . . 8 (.r𝑅) = (+g𝑀)
35 zrhcntr.2 . . . . . . . 8 𝐶 = (Cntr‘𝑀)
3633, 34, 35elcntr 19209 . . . . . . 7 ((𝐿‘0) ∈ 𝐶 ↔ ((𝐿‘0) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘0)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘0))))
3719, 31, 36sylanbrc 583 . . . . . 6 (𝜑 → (𝐿‘0) ∈ 𝐶)
3812zrhrhm 21418 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
39 rhmghm 20369 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
4011, 38, 393syl 18 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring GrpHom 𝑅))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝐿 ∈ (ℤring GrpHom 𝑅))
42 simplr 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℕ0)
4342nn0zd 12497 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑛 ∈ ℤ)
44 1zzd 12506 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 1 ∈ ℤ)
45 zringbas 21360 . . . . . . . . . 10 ℤ = (Base‘ℤring)
46 zringplusg 21361 . . . . . . . . . 10 + = (+g‘ℤring)
47 eqid 2729 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4845, 46, 47ghmlin 19100 . . . . . . . . 9 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
4941, 43, 44, 48syl3anc 1373 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(𝐿‘1)))
50 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
5112, 50zrh1 21419 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
5211, 51syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑅))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘1) = (1r𝑅))
5453oveq2d 7365 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(𝐿‘1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5549, 54eqtrd 2764 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) = ((𝐿𝑛)(+g𝑅)(1r𝑅)))
5611ringgrpd 20127 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → 𝑅 ∈ Grp)
5833cntrss 19210 . . . . . . . . . . . 12 (Cntr‘𝑀) ⊆ (Base‘𝑅)
5935, 58eqsstri 3982 . . . . . . . . . . 11 𝐶 ⊆ (Base‘𝑅)
6059a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ (Base‘𝑅))
6160sselda 3935 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿𝑛) ∈ (Base‘𝑅))
6216, 50ringidcl 20150 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6311, 62syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (1r𝑅) ∈ (Base‘𝑅))
6516, 47, 57, 61, 64grpcld 18826 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
6633, 34, 35cntri 19211 . . . . . . . . . . . 12 (((𝐿𝑛) ∈ 𝐶𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6766adantll 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑛)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑛)))
6811ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
69 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7016, 20, 50, 68, 69ringlidmd 20157 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7116, 20, 50, 68, 69ringridmd 20158 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
7270, 71eqtr4d 2767 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
7367, 72oveq12d 7367 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7461adantr 480 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑛) ∈ (Base‘𝑅))
7568, 62syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
7616, 47, 20, 68, 74, 75, 69ringdird 20149 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (((𝐿𝑛)(.r𝑅)𝑥)(+g𝑅)((1r𝑅)(.r𝑅)𝑥)))
7716, 47, 20, 68, 69, 74, 75ringdid 20148 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))) = ((𝑥(.r𝑅)(𝐿𝑛))(+g𝑅)(𝑥(.r𝑅)(1r𝑅))))
7873, 76, 773eqtr4d 2774 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
7978ralrimiva 3121 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅))))
8033, 34, 35elcntr 19209 . . . . . . . 8 (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶 ↔ (((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐿𝑛)(+g𝑅)(1r𝑅))(.r𝑅)𝑥) = (𝑥(.r𝑅)((𝐿𝑛)(+g𝑅)(1r𝑅)))))
8165, 79, 80sylanbrc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → ((𝐿𝑛)(+g𝑅)(1r𝑅)) ∈ 𝐶)
8255, 81eqeltrd 2828 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝐿𝑛) ∈ 𝐶) → (𝐿‘(𝑛 + 1)) ∈ 𝐶)
834, 6, 8, 10, 37, 82nn0indd 12573 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (𝐿𝑚) ∈ 𝐶)
8483ralrimiva 3121 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
8584adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
86 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
872, 85, 86rspcdva 3578 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
8845, 16rhmf 20370 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶(Base‘𝑅))
8911, 38, 883syl 18 . . . . 5 (𝜑𝐿:ℤ⟶(Base‘𝑅))
9089adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝐿:ℤ⟶(Base‘𝑅))
91 zrhcntr.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
9291adantr 480 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
9390, 92ffvelcdmd 7019 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ (Base‘𝑅))
94 eqid 2729 . . . . . 6 (invg𝑅) = (invg𝑅)
9511ad2antrr 726 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
96 fveq2 6822 . . . . . . . . . . 11 (𝑚 = -𝑁 → (𝐿𝑚) = (𝐿‘-𝑁))
9796eleq1d 2813 . . . . . . . . . 10 (𝑚 = -𝑁 → ((𝐿𝑚) ∈ 𝐶 ↔ (𝐿‘-𝑁) ∈ 𝐶))
9884adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑚 ∈ ℕ0 (𝐿𝑚) ∈ 𝐶)
99 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
10097, 98, 99rspcdva 3578 . . . . . . . . 9 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ 𝐶)
10133, 34, 35elcntr 19209 . . . . . . . . 9 ((𝐿‘-𝑁) ∈ 𝐶 ↔ ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
102100, 101sylib 218 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ((𝐿‘-𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁))))
103102simpld 494 . . . . . . 7 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
104103adantr 480 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘-𝑁) ∈ (Base‘𝑅))
105 simpr 484 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
10616, 20, 94, 95, 104, 105ringmneg1 20189 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
10791zcnd 12581 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108107ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 ∈ ℂ)
109108negnegd 11466 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = 𝑁)
11091znegcld 12582 . . . . . . . . . . 11 (𝜑 → -𝑁 ∈ ℤ)
111 zringinvg 21372 . . . . . . . . . . 11 (-𝑁 ∈ ℤ → --𝑁 = ((invg‘ℤring)‘-𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝜑 → --𝑁 = ((invg‘ℤring)‘-𝑁))
113112ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → --𝑁 = ((invg‘ℤring)‘-𝑁))
114109, 113eqtr3d 2766 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑁 = ((invg‘ℤring)‘-𝑁))
115114fveq2d 6826 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = (𝐿‘((invg‘ℤring)‘-𝑁)))
11695, 38, 393syl 18 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
117110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → -𝑁 ∈ ℤ)
118 eqid 2729 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
11945, 118, 94ghminv 19102 . . . . . . . 8 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ -𝑁 ∈ ℤ) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
120116, 117, 119syl2anc 584 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿‘((invg‘ℤring)‘-𝑁)) = ((invg𝑅)‘(𝐿‘-𝑁)))
121115, 120eqtrd 2764 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐿𝑁) = ((invg𝑅)‘(𝐿‘-𝑁)))
122121oveq1d 7364 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (((invg𝑅)‘(𝐿‘-𝑁))(.r𝑅)𝑥))
12316, 20, 94, 95, 105, 104ringmneg2 20190 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
124121oveq2d 7365 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = (𝑥(.r𝑅)((invg𝑅)‘(𝐿‘-𝑁))))
125102simprd 495 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
126125r19.21bi 3221 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿‘-𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿‘-𝑁)))
127126fveq2d 6826 . . . . . 6 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)) = ((invg𝑅)‘(𝑥(.r𝑅)(𝐿‘-𝑁))))
128123, 124, 1273eqtr4d 2774 . . . . 5 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(𝐿𝑁)) = ((invg𝑅)‘((𝐿‘-𝑁)(.r𝑅)𝑥)))
129106, 122, 1283eqtr4d 2774 . . . 4 (((𝜑 ∧ -𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
130129ralrimiva 3121 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ0) → ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁)))
13133, 34, 35elcntr 19209 . . 3 ((𝐿𝑁) ∈ 𝐶 ↔ ((𝐿𝑁) ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐿𝑁)(.r𝑅)𝑥) = (𝑥(.r𝑅)(𝐿𝑁))))
13293, 130, 131sylanbrc 583 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ0) → (𝐿𝑁) ∈ 𝐶)
133 elznn0 12486 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
13491, 133sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
135134simprd 495 . 2 (𝜑 → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
13687, 132, 135mpjaodan 960 1 (𝜑 → (𝐿𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wss 3903  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  -cneg 11348  0cn0 12384  cz 12471  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813   GrpHom cghm 19091  Cntrccntr 19195  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118   RingHom crh 20354  ringczring 21353  ℤRHomczrh 21406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cntr 19197  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-cnfld 21262  df-zring 21354  df-zrh 21410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator