![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringdi | Structured version Visualization version GIF version |
Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
Ref | Expression |
---|---|
ringdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringdi.p | ⊢ + = (+g‘𝑅) |
ringdi.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringdi | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
3 | ringdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | ringdilem 20276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Ringcrg 20260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ring 20262 |
This theorem is referenced by: ringcomlem 20302 ringnegr 20326 ringlghm 20335 prdsringd 20344 imasring 20353 issubrg2 20620 cntzsubr 20634 sralmod 21217 psrlmod 22003 psrdi 22008 mamudir 22429 mdetrlin 22629 mdetuni0 22648 ply1divex 26196 ringdid 33209 erler 33237 rlocaddval 33240 lfladdcl 39027 lflvsdi2 39035 dvhlveclem 41065 |
Copyright terms: Public domain | W3C validator |