MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdi Structured version   Visualization version   GIF version

Theorem ringdi 20259
Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
ringdi.b 𝐵 = (Base‘𝑅)
ringdi.p + = (+g𝑅)
ringdi.t · = (.r𝑅)
Assertion
Ref Expression
ringdi ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))

Proof of Theorem ringdi
StepHypRef Expression
1 ringdi.b . . 3 𝐵 = (Base‘𝑅)
2 ringdi.p . . 3 + = (+g𝑅)
3 ringdi.t . . 3 · = (.r𝑅)
41, 2, 3ringdilem 20247 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
54simpld 494 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Ringcrg 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-ring 20233
This theorem is referenced by:  ringdid  20261  ringcomlem  20277  ringnegr  20301  ringlghm  20310  prdsringd  20319  imasring  20328  issubrg2  20593  cntzsubr  20607  sralmod  21195  psrlmod  21981  psrdi  21986  mamudir  22409  mdetrlin  22609  mdetuni0  22628  ply1divex  26177  erler  33270  rlocaddval  33273  lfladdcl  39073  lflvsdi2  39081  dvhlveclem  41111
  Copyright terms: Public domain W3C validator