| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
| Ref | Expression |
|---|---|
| ringdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringdi.p | ⊢ + = (+g‘𝑅) |
| ringdi.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringdi | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 3 | ringdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | 1, 2, 3 | ringdilem 20165 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ring 20151 |
| This theorem is referenced by: ringdid 20179 ringcomlem 20195 ringnegr 20219 ringlghm 20228 prdsringd 20237 imasring 20246 issubrg2 20508 cntzsubr 20522 sralmod 21101 psrlmod 21876 psrdi 21881 mamudir 22298 mdetrlin 22496 mdetuni0 22515 ply1divex 26049 erler 33223 rlocaddval 33226 lfladdcl 39071 lflvsdi2 39079 dvhlveclem 41109 |
| Copyright terms: Public domain | W3C validator |