![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringdir | Structured version Visualization version GIF version |
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
Ref | Expression |
---|---|
ringdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringdi.p | ⊢ + = (+g‘𝑅) |
ringdi.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
3 | ringdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | ringdilem 20146 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
5 | 4 | simprd 495 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 +gcplusg 17198 .rcmulr 17199 Ringcrg 20130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 ax-nul 5297 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 df-ring 20132 |
This theorem is referenced by: ringo2times 20166 ringcomlem 20170 ringnegl 20193 mulgass2 20200 ringrghm 20204 prdsringd 20212 imasring 20221 dvrdir 20306 issubrg2 20486 cntzsubr 20500 sralmod 21035 frlmphl 21646 psrlmod 21833 psrdir 21839 evlslem1 21957 mamudi 22227 mdetrlin 22428 mxidlprm 33058 q1pdir 33142 r1pcyc 33146 lflvscl 38441 lflvsdi1 38442 dvhlveclem 40473 |
Copyright terms: Public domain | W3C validator |