Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringdir | Structured version Visualization version GIF version |
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
Ref | Expression |
---|---|
ringdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringdi.p | ⊢ + = (+g‘𝑅) |
ringdi.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
3 | ringdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | ringi 19808 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
5 | 4 | simprd 496 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 +gcplusg 16971 .rcmulr 16972 Ringcrg 19792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-ring 19794 |
This theorem is referenced by: ringadd2 19823 rngo2times 19824 ringcom 19827 ringlz 19835 ringnegl 19842 rngsubdir 19848 mulgass2 19849 ringrghm 19853 prdsringd 19860 imasring 19867 opprring 19882 issubrg2 20053 cntzsubr 20066 sralmod 20466 frlmphl 20997 psrlmod 21179 psrdir 21185 evlslem1 21301 mamudi 21559 mdetrlin 21760 dvrdir 31496 mxidlprm 31649 lflvscl 37098 lflvsdi1 37099 dvhlveclem 39129 lidlrng 45496 |
Copyright terms: Public domain | W3C validator |