MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdir Structured version   Visualization version   GIF version

Theorem ringdir 20178
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
ringdi.b 𝐵 = (Base‘𝑅)
ringdi.p + = (+g𝑅)
ringdi.t · = (.r𝑅)
Assertion
Ref Expression
ringdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem ringdir
StepHypRef Expression
1 ringdi.b . . 3 𝐵 = (Base‘𝑅)
2 ringdi.p . . 3 + = (+g𝑅)
3 ringdi.t . . 3 · = (.r𝑅)
41, 2, 3ringdilem 20165 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
54simprd 495 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-ring 20151
This theorem is referenced by:  ringdird  20180  ringo2times  20191  ringcomlem  20195  ringnegl  20218  mulgass2  20225  ringrghm  20229  prdsringd  20237  imasring  20246  dvrdir  20328  issubrg2  20508  cntzsubr  20522  sralmod  21101  frlmphl  21697  psrlmod  21876  psrdir  21882  evlslem1  21996  mamudi  22297  mdetrlin  22496  rlocaddval  33226  mxidlprm  33448  q1pdir  33575  r1pcyc  33579  lflvscl  39077  lflvsdi1  39078  dvhlveclem  41109
  Copyright terms: Public domain W3C validator