![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringdir | Structured version Visualization version GIF version |
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
Ref | Expression |
---|---|
ringdi.b | โข ๐ต = (Baseโ๐ ) |
ringdi.p | โข + = (+gโ๐ ) |
ringdi.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
ringdir | โข ((๐ โ Ring โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ ((๐ + ๐) ยท ๐) = ((๐ ยท ๐) + (๐ ยท ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdi.b | . . 3 โข ๐ต = (Baseโ๐ ) | |
2 | ringdi.p | . . 3 โข + = (+gโ๐ ) | |
3 | ringdi.t | . . 3 โข ยท = (.rโ๐ ) | |
4 | 1, 2, 3 | ringdilem 20143 | . 2 โข ((๐ โ Ring โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ ((๐ ยท (๐ + ๐)) = ((๐ ยท ๐) + (๐ ยท ๐)) โง ((๐ + ๐) ยท ๐) = ((๐ ยท ๐) + (๐ ยท ๐)))) |
5 | 4 | simprd 494 | 1 โข ((๐ โ Ring โง (๐ โ ๐ต โง ๐ โ ๐ต โง ๐ โ ๐ต)) โ ((๐ + ๐) ยท ๐) = ((๐ ยท ๐) + (๐ ยท ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 โง w3a 1085 = wceq 1539 โ wcel 2104 โcfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Ringcrg 20127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-ring 20129 |
This theorem is referenced by: ringo2times 20163 ringcomlem 20167 ringnegl 20190 mulgass2 20197 ringrghm 20201 prdsringd 20209 imasring 20218 dvrdir 20303 issubrg2 20482 cntzsubr 20496 sralmod 20954 frlmphl 21555 psrlmod 21740 psrdir 21746 evlslem1 21864 mamudi 22123 mdetrlin 22324 mxidlprm 32860 q1pdir 32948 r1pcyc 32952 lflvscl 38250 lflvsdi1 38251 dvhlveclem 40282 |
Copyright terms: Public domain | W3C validator |