| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
| Ref | Expression |
|---|---|
| ringdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringdi.p | ⊢ + = (+g‘𝑅) |
| ringdi.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdi.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringdi.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 3 | ringdi.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | 1, 2, 3 | ringdilem 20207 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 Ringcrg 20191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-ring 20193 |
| This theorem is referenced by: ringdird 20222 ringo2times 20233 ringcomlem 20237 ringnegl 20260 mulgass2 20267 ringrghm 20271 prdsringd 20279 imasring 20288 dvrdir 20370 issubrg2 20550 cntzsubr 20564 sralmod 21143 frlmphl 21739 psrlmod 21918 psrdir 21924 evlslem1 22038 mamudi 22339 mdetrlin 22538 rlocaddval 33209 mxidlprm 33431 q1pdir 33558 r1pcyc 33562 lflvscl 39041 lflvsdi1 39042 dvhlveclem 41073 |
| Copyright terms: Public domain | W3C validator |