![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > risci | Structured version Visualization version GIF version |
Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
risci | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2821 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)) | |
2 | risc 37946 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) | |
3 | 1, 2 | imbitrrid 246 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → 𝑅 ≃𝑟 𝑆)) |
4 | 3 | 3impia 1117 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 RingOpscrngo 37854 RingOpsIso crngoiso 37921 ≃𝑟 crisc 37922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 df-ov 7451 df-risc 37943 |
This theorem is referenced by: riscer 37948 |
Copyright terms: Public domain | W3C validator |