Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  risci Structured version   Visualization version   GIF version

Theorem risci 37994
Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
risci ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅𝑟 𝑆)

Proof of Theorem risci
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex2 2818 . . 3 (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))
2 risc 37993 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
31, 2imbitrrid 246 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → 𝑅𝑟 𝑆))
433impia 1118 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅𝑟 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1779  wcel 2108   class class class wbr 5143  (class class class)co 7431  RingOpscrngo 37901   RingOpsIso crngoiso 37968  𝑟 crisc 37969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-iota 6514  df-fv 6569  df-ov 7434  df-risc 37990
This theorem is referenced by:  riscer  37995
  Copyright terms: Public domain W3C validator