Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > risci | Structured version Visualization version GIF version |
Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
risci | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2818 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)) | |
2 | risc 36144 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝑅 ≃𝑟 𝑆)) |
4 | 3 | 3impia 1116 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 RingOpscrngo 36052 RngIso crngiso 36119 ≃𝑟 crisc 36120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 df-risc 36141 |
This theorem is referenced by: riscer 36146 |
Copyright terms: Public domain | W3C validator |