Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > risci | Structured version Visualization version GIF version |
Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
risci | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 3443 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)) | |
2 | risc 36071 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝑅 ≃𝑟 𝑆)) |
4 | 3 | 3impia 1115 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 RingOpscrngo 35979 RngIso crngiso 36046 ≃𝑟 crisc 36047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-iota 6376 df-fv 6426 df-ov 7258 df-risc 36068 |
This theorem is referenced by: riscer 36073 |
Copyright terms: Public domain | W3C validator |