| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > risci | Structured version Visualization version GIF version | ||
| Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| risci | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex2 2810 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)) | |
| 2 | risc 38099 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → 𝑅 ≃𝑟 𝑆)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 RingOpscrngo 38007 RingOpsIso crngoiso 38074 ≃𝑟 crisc 38075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-iota 6445 df-fv 6497 df-ov 7358 df-risc 38096 |
| This theorem is referenced by: riscer 38101 |
| Copyright terms: Public domain | W3C validator |