![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > risci | Structured version Visualization version GIF version |
Description: Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
risci | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2805 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)) | |
2 | risc 37698 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) | |
3 | 1, 2 | imbitrrid 245 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → 𝑅 ≃𝑟 𝑆)) |
4 | 3 | 3impia 1114 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∃wex 1774 ∈ wcel 2099 class class class wbr 5144 (class class class)co 7414 RingOpscrngo 37606 RingOpsIso crngoiso 37673 ≃𝑟 crisc 37674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-iota 6496 df-fv 6552 df-ov 7417 df-risc 37695 |
This theorem is referenced by: riscer 37700 |
Copyright terms: Public domain | W3C validator |