![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncnvcnv | Structured version Visualization version GIF version |
Description: The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
rncnvcnv | ⊢ ran ◡◡𝐴 = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5683 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | dfdm4 5892 | . 2 ⊢ dom ◡𝐴 = ran ◡◡𝐴 | |
3 | 1, 2 | eqtr2i 2755 | 1 ⊢ ran ◡◡𝐴 = ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ◡ccnv 5671 dom cdm 5672 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5144 df-opab 5206 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: rnresv 6202 trrelsuperrel2dg 43372 |
Copyright terms: Public domain | W3C validator |