MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncnvcnv Structured version   Visualization version   GIF version

Theorem rncnvcnv 5940
Description: The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
rncnvcnv ran 𝐴 = ran 𝐴

Proof of Theorem rncnvcnv
StepHypRef Expression
1 df-rn 5693 . 2 ran 𝐴 = dom 𝐴
2 dfdm4 5902 . 2 dom 𝐴 = ran 𝐴
31, 2eqtr2i 2757 1 ran 𝐴 = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  ccnv 5681  dom cdm 5682  ran crn 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-cnv 5690  df-dm 5692  df-rn 5693
This theorem is referenced by:  rnresv  6210  trrelsuperrel2dg  43132
  Copyright terms: Public domain W3C validator