MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncnvcnv Structured version   Visualization version   GIF version

Theorem rncnvcnv 5843
Description: The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
rncnvcnv ran 𝐴 = ran 𝐴

Proof of Theorem rncnvcnv
StepHypRef Expression
1 df-rn 5600 . 2 ran 𝐴 = dom 𝐴
2 dfdm4 5804 . 2 dom 𝐴 = ran 𝐴
31, 2eqtr2i 2767 1 ran 𝐴 = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5588  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  rnresv  6104  trrelsuperrel2dg  41279
  Copyright terms: Public domain W3C validator