MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Visualization version   GIF version

Theorem rnresv 6101
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv ran (𝐴 ↾ V) = ran 𝐴

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 6093 . . 3 𝐴 = (𝐴 ↾ V)
21rneqi 5843 . 2 ran 𝐴 = ran (𝐴 ↾ V)
3 rncnvcnv 5840 . 2 ran 𝐴 = ran 𝐴
42, 3eqtr3i 2769 1 ran (𝐴 ↾ V) = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3430  ccnv 5587  ran crn 5589  cres 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600
This theorem is referenced by:  dfrn4  6102  rnttrcl  9441
  Copyright terms: Public domain W3C validator