MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Visualization version   GIF version

Theorem rnresv 6156
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv ran (𝐴 ↾ V) = ran 𝐴

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 6148 . . 3 𝐴 = (𝐴 ↾ V)
21rneqi 5883 . 2 ran 𝐴 = ran (𝐴 ↾ V)
3 rncnvcnv 5880 . 2 ran 𝐴 = ran 𝐴
42, 3eqtr3i 2758 1 ran (𝐴 ↾ V) = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3437  ccnv 5620  ran crn 5622  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633
This theorem is referenced by:  dfrn4  6157  rnttrcl  9623
  Copyright terms: Public domain W3C validator