MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Visualization version   GIF version

Theorem rnresv 6232
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv ran (𝐴 ↾ V) = ran 𝐴

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 6224 . . 3 𝐴 = (𝐴 ↾ V)
21rneqi 5962 . 2 ran 𝐴 = ran (𝐴 ↾ V)
3 rncnvcnv 5959 . 2 ran 𝐴 = ran 𝐴
42, 3eqtr3i 2770 1 ran (𝐴 ↾ V) = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  ccnv 5699  ran crn 5701  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  dfrn4  6233  rnttrcl  9791
  Copyright terms: Public domain W3C validator