 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Visualization version   GIF version

Theorem rnresv 5850
 Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv ran (𝐴 ↾ V) = ran 𝐴

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 5843 . . 3 𝐴 = (𝐴 ↾ V)
21rneqi 5599 . 2 ran 𝐴 = ran (𝐴 ↾ V)
3 rncnvcnv 5596 . 2 ran 𝐴 = ran 𝐴
42, 3eqtr3i 2804 1 ran (𝐴 ↾ V) = ran 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1601  Vcvv 3398  ◡ccnv 5356  ran crn 5358   ↾ cres 5359 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-dm 5367  df-rn 5368  df-res 5369 This theorem is referenced by:  dfrn4  5851
 Copyright terms: Public domain W3C validator