Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnresv | Structured version Visualization version GIF version |
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.) |
Ref | Expression |
---|---|
rnresv | ⊢ ran (𝐴 ↾ V) = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 6093 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
2 | 1 | rneqi 5843 | . 2 ⊢ ran ◡◡𝐴 = ran (𝐴 ↾ V) |
3 | rncnvcnv 5840 | . 2 ⊢ ran ◡◡𝐴 = ran 𝐴 | |
4 | 2, 3 | eqtr3i 2769 | 1 ⊢ ran (𝐴 ↾ V) = ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3430 ◡ccnv 5587 ran crn 5589 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 |
This theorem is referenced by: dfrn4 6102 rnttrcl 9441 |
Copyright terms: Public domain | W3C validator |