Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   GIF version

Theorem trrelsuperrel2dg 40817
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Assertion
Ref Expression
trrelsuperrel2dg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 4063 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
2 trrelsuperrel2dg.s . . 3 (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2sseqtrrid 3931 . 2 (𝜑𝑅𝑆)
4 xptrrel 14430 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
5 ssun2 4064 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
64, 5sstri 3887 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
82, 2coeq12d 5708 . . . 4 (𝜑 → (𝑆𝑆) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
9 coundir 6082 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 relcnv 5942 . . . . . . 7 Rel 𝑅
11 cocnvcnv1 6091 . . . . . . . . 9 (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 relssdmrn 6102 . . . . . . . . . . 11 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
13 dmcnvcnv 5777 . . . . . . . . . . . 12 dom 𝑅 = dom 𝑅
14 rncnvcnv 5778 . . . . . . . . . . . 12 ran 𝑅 = ran 𝑅
1513, 14xpeq12i 5554 . . . . . . . . . . 11 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1612, 15sseqtrdi 3928 . . . . . . . . . 10 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
17 coss1 5699 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1816, 17syl 17 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1911, 18eqsstrrid 3927 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
20 ssequn1 4071 . . . . . . . 8 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ↔ ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2119, 20sylib 221 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2210, 21ax-mp 5 . . . . . 6 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
239, 22eqtri 2761 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
24 coundi 6081 . . . . . 6 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 cocnvcnv2 6092 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ 𝑅) = ((dom 𝑅 × ran 𝑅) ∘ 𝑅)
26 coss2 5700 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2716, 26syl 17 . . . . . . . . 9 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2825, 27eqsstrrid 3927 . . . . . . . 8 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 4071 . . . . . . . 8 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 221 . . . . . . 7 (Rel 𝑅 → (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3110, 30ax-mp 5 . . . . . 6 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3224, 31eqtri 2761 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3323, 32eqtri 2761 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
348, 33eqtrdi 2789 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
357, 34, 23sstr4d 3925 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
363, 35jca 515 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  cun 3842  wss 3844   × cxp 5524  ccnv 5525  dom cdm 5526  ran crn 5527  ccom 5530  Rel wrel 5531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator