Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   GIF version

Theorem trrelsuperrel2dg 43660
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Assertion
Ref Expression
trrelsuperrel2dg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 4187 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
2 trrelsuperrel2dg.s . . 3 (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2sseqtrrid 4048 . 2 (𝜑𝑅𝑆)
4 xptrrel 15015 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
5 ssun2 4188 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
64, 5sstri 4004 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
82, 2coeq12d 5877 . . . 4 (𝜑 → (𝑆𝑆) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
9 coundir 6269 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 relcnv 6124 . . . . . . 7 Rel 𝑅
11 cocnvcnv1 6278 . . . . . . . . 9 (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 relssdmrn 6289 . . . . . . . . . . 11 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
13 dmcnvcnv 5946 . . . . . . . . . . . 12 dom 𝑅 = dom 𝑅
14 rncnvcnv 5947 . . . . . . . . . . . 12 ran 𝑅 = ran 𝑅
1513, 14xpeq12i 5716 . . . . . . . . . . 11 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1612, 15sseqtrdi 4045 . . . . . . . . . 10 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
17 coss1 5868 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1816, 17syl 17 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1911, 18eqsstrrid 4044 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
20 ssequn1 4195 . . . . . . . 8 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ↔ ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2119, 20sylib 218 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2210, 21ax-mp 5 . . . . . 6 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
239, 22eqtri 2762 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
24 coundi 6268 . . . . . 6 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 cocnvcnv2 6279 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ 𝑅) = ((dom 𝑅 × ran 𝑅) ∘ 𝑅)
26 coss2 5869 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2716, 26syl 17 . . . . . . . . 9 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2825, 27eqsstrrid 4044 . . . . . . . 8 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 4195 . . . . . . . 8 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 218 . . . . . . 7 (Rel 𝑅 → (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3110, 30ax-mp 5 . . . . . 6 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3224, 31eqtri 2762 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3323, 32eqtri 2762 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
348, 33eqtrdi 2790 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
357, 34, 23sstr4d 4042 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
363, 35jca 511 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  cun 3960  wss 3962   × cxp 5686  ccnv 5687  dom cdm 5688  ran crn 5689  ccom 5692  Rel wrel 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator