Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   GIF version

Theorem trrelsuperrel2dg 43667
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Assertion
Ref Expression
trrelsuperrel2dg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 4144 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
2 trrelsuperrel2dg.s . . 3 (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2sseqtrrid 3993 . 2 (𝜑𝑅𝑆)
4 xptrrel 14953 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
5 ssun2 4145 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
64, 5sstri 3959 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
82, 2coeq12d 5831 . . . 4 (𝜑 → (𝑆𝑆) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
9 coundir 6224 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 relcnv 6078 . . . . . . 7 Rel 𝑅
11 cocnvcnv1 6233 . . . . . . . . 9 (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 relssdmrn 6244 . . . . . . . . . . 11 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
13 dmcnvcnv 5900 . . . . . . . . . . . 12 dom 𝑅 = dom 𝑅
14 rncnvcnv 5901 . . . . . . . . . . . 12 ran 𝑅 = ran 𝑅
1513, 14xpeq12i 5669 . . . . . . . . . . 11 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1612, 15sseqtrdi 3990 . . . . . . . . . 10 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
17 coss1 5822 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1816, 17syl 17 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1911, 18eqsstrrid 3989 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
20 ssequn1 4152 . . . . . . . 8 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ↔ ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2119, 20sylib 218 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2210, 21ax-mp 5 . . . . . 6 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
239, 22eqtri 2753 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
24 coundi 6223 . . . . . 6 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 cocnvcnv2 6234 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ 𝑅) = ((dom 𝑅 × ran 𝑅) ∘ 𝑅)
26 coss2 5823 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2716, 26syl 17 . . . . . . . . 9 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2825, 27eqsstrrid 3989 . . . . . . . 8 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 4152 . . . . . . . 8 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 218 . . . . . . 7 (Rel 𝑅 → (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3110, 30ax-mp 5 . . . . . 6 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3224, 31eqtri 2753 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3323, 32eqtri 2753 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
348, 33eqtrdi 2781 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
357, 34, 23sstr4d 4005 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
363, 35jca 511 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3915  wss 3917   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator