| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcnvcnv | Structured version Visualization version GIF version | ||
| Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6150 gives another proof). (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| dmcnvcnv | ⊢ dom ◡◡𝐴 = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5849 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 2 | df-rn 5642 | . 2 ⊢ ran ◡𝐴 = dom ◡◡𝐴 | |
| 3 | 1, 2 | eqtr2i 2753 | 1 ⊢ dom ◡◡𝐴 = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5630 dom cdm 5631 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: resdm2 6192 f1cnvcnv 6747 trrelsuperrel2dg 43653 |
| Copyright terms: Public domain | W3C validator |