![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcnvcnv | Structured version Visualization version GIF version |
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6211 gives another proof). (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
dmcnvcnv | ⊢ dom ◡◡𝐴 = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5909 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | df-rn 5700 | . 2 ⊢ ran ◡𝐴 = dom ◡◡𝐴 | |
3 | 1, 2 | eqtr2i 2764 | 1 ⊢ dom ◡◡𝐴 = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5688 dom cdm 5689 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: resdm2 6253 f1cnvcnv 6814 trrelsuperrel2dg 43661 |
Copyright terms: Public domain | W3C validator |