MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcnvcnv Structured version   Visualization version   GIF version

Theorem dmcnvcnv 5900
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6165 gives another proof). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 5862 . 2 dom 𝐴 = ran 𝐴
2 df-rn 5652 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2754 1 dom 𝐴 = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5640  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  resdm2  6207  f1cnvcnv  6768  trrelsuperrel2dg  43667
  Copyright terms: Public domain W3C validator