MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcnvcnv Structured version   Visualization version   GIF version

Theorem dmcnvcnv 5947
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6211 gives another proof). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 5909 . 2 dom 𝐴 = ran 𝐴
2 df-rn 5700 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2764 1 dom 𝐴 = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5688  dom cdm 5689  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  resdm2  6253  f1cnvcnv  6814  trrelsuperrel2dg  43661
  Copyright terms: Public domain W3C validator