![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcnvcnv | Structured version Visualization version GIF version |
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6220 gives another proof). (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
dmcnvcnv | ⊢ dom ◡◡𝐴 = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5920 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | df-rn 5711 | . 2 ⊢ ran ◡𝐴 = dom ◡◡𝐴 | |
3 | 1, 2 | eqtr2i 2769 | 1 ⊢ dom ◡◡𝐴 = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: resdm2 6262 f1cnvcnv 6826 trrelsuperrel2dg 43633 |
Copyright terms: Public domain | W3C validator |