![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcnvcnv | Structured version Visualization version GIF version |
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6182 gives another proof). (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
dmcnvcnv | ⊢ dom ◡◡𝐴 = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5889 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | df-rn 5680 | . 2 ⊢ ran ◡𝐴 = dom ◡◡𝐴 | |
3 | 1, 2 | eqtr2i 2755 | 1 ⊢ dom ◡◡𝐴 = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ◡ccnv 5668 dom cdm 5669 ran crn 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-cnv 5677 df-dm 5679 df-rn 5680 |
This theorem is referenced by: resdm2 6224 f1cnvcnv 6791 trrelsuperrel2dg 42995 |
Copyright terms: Public domain | W3C validator |