MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcnvcnv Structured version   Visualization version   GIF version

Theorem dmcnvcnv 5924
Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6189 gives another proof). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 5886 . 2 dom 𝐴 = ran 𝐴
2 df-rn 5676 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2758 1 dom 𝐴 = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5664  dom cdm 5665  ran crn 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-cnv 5673  df-dm 5675  df-rn 5676
This theorem is referenced by:  resdm2  6231  f1cnvcnv  6793  trrelsuperrel2dg  43661
  Copyright terms: Public domain W3C validator