| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcnvcnv | Structured version Visualization version GIF version | ||
| Description: The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6189 gives another proof). (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| dmcnvcnv | ⊢ dom ◡◡𝐴 = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5886 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 2 | df-rn 5676 | . 2 ⊢ ran ◡𝐴 = dom ◡◡𝐴 | |
| 3 | 1, 2 | eqtr2i 2758 | 1 ⊢ dom ◡◡𝐴 = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ◡ccnv 5664 dom cdm 5665 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: resdm2 6231 f1cnvcnv 6793 trrelsuperrel2dg 43661 |
| Copyright terms: Public domain | W3C validator |