![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elreldm | Structured version Visualization version GIF version |
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5464). (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
elreldm | ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5676 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | ssel 3970 | . . . . 5 ⊢ (𝐴 ⊆ (V × V) → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) | |
3 | 1, 2 | sylbi 216 | . . . 4 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) |
4 | elvv 5743 | . . . 4 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) | |
5 | 3, 4 | imbitrdi 250 | . . 3 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩)) |
6 | eleq1 2815 | . . . . . 6 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵 ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
7 | vex 3472 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3472 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opeldm 5900 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
10 | 6, 9 | biimtrdi 252 | . . . . 5 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
11 | inteq 4946 | . . . . . . . 8 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → ∩ 𝐵 = ∩ ⟨𝑥, 𝑦⟩) | |
12 | 11 | inteqd 4948 | . . . . . . 7 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → ∩ ∩ 𝐵 = ∩ ∩ ⟨𝑥, 𝑦⟩) |
13 | 7, 8 | op1stb 5464 | . . . . . . 7 ⊢ ∩ ∩ ⟨𝑥, 𝑦⟩ = 𝑥 |
14 | 12, 13 | eqtrdi 2782 | . . . . . 6 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → ∩ ∩ 𝐵 = 𝑥) |
15 | 14 | eleq1d 2812 | . . . . 5 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴)) |
16 | 10, 15 | sylibrd 259 | . . . 4 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
17 | 16 | exlimivv 1927 | . . 3 ⊢ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
18 | 5, 17 | syli 39 | . 2 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
19 | 18 | imp 406 | 1 ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ⟨cop 4629 ∩ cint 4943 × cxp 5667 dom cdm 5669 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-int 4944 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-dm 5679 |
This theorem is referenced by: 1stdm 8022 fundmen 9030 |
Copyright terms: Public domain | W3C validator |