| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elreldm | Structured version Visualization version GIF version | ||
| Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5409). (Contributed by NM, 28-Jul-2004.) |
| Ref | Expression |
|---|---|
| elreldm | ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5621 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 2 | ssel 3923 | . . . . 5 ⊢ (𝐴 ⊆ (V × V) → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) | |
| 3 | 1, 2 | sylbi 217 | . . . 4 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) |
| 4 | elvv 5689 | . . . 4 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
| 5 | 3, 4 | imbitrdi 251 | . . 3 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉)) |
| 6 | eleq1 2819 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | opeldm 5846 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 10 | 6, 9 | biimtrdi 253 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
| 11 | inteq 4898 | . . . . . . . 8 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ 𝐵 = ∩ 〈𝑥, 𝑦〉) | |
| 12 | 11 | inteqd 4900 | . . . . . . 7 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = ∩ ∩ 〈𝑥, 𝑦〉) |
| 13 | 7, 8 | op1stb 5409 | . . . . . . 7 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
| 14 | 12, 13 | eqtrdi 2782 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = 𝑥) |
| 15 | 14 | eleq1d 2816 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴)) |
| 16 | 10, 15 | sylibrd 259 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
| 17 | 16 | exlimivv 1933 | . . 3 ⊢ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
| 18 | 5, 17 | syli 39 | . 2 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
| 19 | 18 | imp 406 | 1 ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 〈cop 4579 ∩ cint 4895 × cxp 5612 dom cdm 5614 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-int 4896 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 |
| This theorem is referenced by: 1stdm 7972 fundmen 8953 |
| Copyright terms: Public domain | W3C validator |