MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreldm Structured version   Visualization version   GIF version

Theorem elreldm 5487
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)

Proof of Theorem elreldm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 5257 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
2 ssel 3746 . . . . 5 (𝐴 ⊆ (V × V) → (𝐵𝐴𝐵 ∈ (V × V)))
31, 2sylbi 207 . . . 4 (Rel 𝐴 → (𝐵𝐴𝐵 ∈ (V × V)))
4 elvv 5316 . . . 4 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4syl6ib 241 . . 3 (Rel 𝐴 → (𝐵𝐴 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩))
6 eleq1 2838 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
7 vex 3354 . . . . . . 7 𝑥 ∈ V
8 vex 3354 . . . . . . 7 𝑦 ∈ V
97, 8opeldm 5465 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
106, 9syl6bi 243 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴𝑥 ∈ dom 𝐴))
11 inteq 4615 . . . . . . . 8 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
1211inteqd 4617 . . . . . . 7 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
137, 8op1stb 5068 . . . . . . 7 𝑥, 𝑦⟩ = 𝑥
1412, 13syl6eq 2821 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥)
1514eleq1d 2835 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴))
1610, 15sylibrd 249 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1716exlimivv 2012 . . 3 (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
185, 17syli 39 . 2 (Rel 𝐴 → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1918imp 393 1 ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  Vcvv 3351  wss 3723  cop 4323   cint 4612   × cxp 5248  dom cdm 5250  Rel wrel 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-int 4613  df-br 4788  df-opab 4848  df-xp 5256  df-rel 5257  df-dm 5260
This theorem is referenced by:  1stdm  7368  fundmen  8187
  Copyright terms: Public domain W3C validator