MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreldm Structured version   Visualization version   GIF version

Theorem elreldm 5960
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5491). (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)

Proof of Theorem elreldm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 5707 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
2 ssel 4002 . . . . 5 (𝐴 ⊆ (V × V) → (𝐵𝐴𝐵 ∈ (V × V)))
31, 2sylbi 217 . . . 4 (Rel 𝐴 → (𝐵𝐴𝐵 ∈ (V × V)))
4 elvv 5774 . . . 4 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4imbitrdi 251 . . 3 (Rel 𝐴 → (𝐵𝐴 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩))
6 eleq1 2832 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
7 vex 3492 . . . . . . 7 𝑥 ∈ V
8 vex 3492 . . . . . . 7 𝑦 ∈ V
97, 8opeldm 5932 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
106, 9biimtrdi 253 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴𝑥 ∈ dom 𝐴))
11 inteq 4973 . . . . . . . 8 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
1211inteqd 4975 . . . . . . 7 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
137, 8op1stb 5491 . . . . . . 7 𝑥, 𝑦⟩ = 𝑥
1412, 13eqtrdi 2796 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥)
1514eleq1d 2829 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴))
1610, 15sylibrd 259 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1716exlimivv 1931 . . 3 (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
185, 17syli 39 . 2 (Rel 𝐴 → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1918imp 406 1 ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  wss 3976  cop 4654   cint 4970   × cxp 5698  dom cdm 5700  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-int 4971  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710
This theorem is referenced by:  1stdm  8081  fundmen  9096
  Copyright terms: Public domain W3C validator