MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreldm Structured version   Visualization version   GIF version

Theorem elreldm 5558
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)

Proof of Theorem elreldm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 5325 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
2 ssel 3799 . . . . 5 (𝐴 ⊆ (V × V) → (𝐵𝐴𝐵 ∈ (V × V)))
31, 2sylbi 208 . . . 4 (Rel 𝐴 → (𝐵𝐴𝐵 ∈ (V × V)))
4 elvv 5384 . . . 4 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4syl6ib 242 . . 3 (Rel 𝐴 → (𝐵𝐴 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩))
6 eleq1 2880 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
7 vex 3401 . . . . . . 7 𝑥 ∈ V
8 vex 3401 . . . . . . 7 𝑦 ∈ V
97, 8opeldm 5536 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
106, 9syl6bi 244 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴𝑥 ∈ dom 𝐴))
11 inteq 4679 . . . . . . . 8 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
1211inteqd 4681 . . . . . . 7 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
137, 8op1stb 5136 . . . . . . 7 𝑥, 𝑦⟩ = 𝑥
1412, 13syl6eq 2863 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥)
1514eleq1d 2877 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴))
1610, 15sylibrd 250 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1716exlimivv 2023 . . 3 (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
185, 17syli 39 . 2 (Rel 𝐴 → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1918imp 395 1 ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wex 1859  wcel 2157  Vcvv 3398  wss 3776  cop 4383   cint 4676   × cxp 5316  dom cdm 5318  Rel wrel 5323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rab 3112  df-v 3400  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-int 4677  df-br 4852  df-opab 4914  df-xp 5324  df-rel 5325  df-dm 5328
This theorem is referenced by:  1stdm  7450  fundmen  8269
  Copyright terms: Public domain W3C validator