MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreldm Structured version   Visualization version   GIF version

Theorem elreldm 5888
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5426). (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)

Proof of Theorem elreldm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 5638 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
2 ssel 3937 . . . . 5 (𝐴 ⊆ (V × V) → (𝐵𝐴𝐵 ∈ (V × V)))
31, 2sylbi 217 . . . 4 (Rel 𝐴 → (𝐵𝐴𝐵 ∈ (V × V)))
4 elvv 5706 . . . 4 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4imbitrdi 251 . . 3 (Rel 𝐴 → (𝐵𝐴 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩))
6 eleq1 2816 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
7 vex 3448 . . . . . . 7 𝑥 ∈ V
8 vex 3448 . . . . . . 7 𝑦 ∈ V
97, 8opeldm 5861 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
106, 9biimtrdi 253 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴𝑥 ∈ dom 𝐴))
11 inteq 4909 . . . . . . . 8 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
1211inteqd 4911 . . . . . . 7 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
137, 8op1stb 5426 . . . . . . 7 𝑥, 𝑦⟩ = 𝑥
1412, 13eqtrdi 2780 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥)
1514eleq1d 2813 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴))
1610, 15sylibrd 259 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1716exlimivv 1932 . . 3 (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
185, 17syli 39 . 2 (Rel 𝐴 → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1918imp 406 1 ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  wss 3911  cop 4591   cint 4906   × cxp 5629  dom cdm 5631  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-int 4907  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641
This theorem is referenced by:  1stdm  7998  fundmen  8979
  Copyright terms: Public domain W3C validator