Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elreldm | Structured version Visualization version GIF version |
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5355). (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
elreldm | ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5558 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | ssel 3893 | . . . . 5 ⊢ (𝐴 ⊆ (V × V) → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) | |
3 | 1, 2 | sylbi 220 | . . . 4 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) |
4 | elvv 5623 | . . . 4 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | syl6ib 254 | . . 3 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉)) |
6 | eleq1 2825 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
7 | vex 3412 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3412 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opeldm 5776 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
10 | 6, 9 | syl6bi 256 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
11 | inteq 4862 | . . . . . . . 8 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ 𝐵 = ∩ 〈𝑥, 𝑦〉) | |
12 | 11 | inteqd 4864 | . . . . . . 7 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = ∩ ∩ 〈𝑥, 𝑦〉) |
13 | 7, 8 | op1stb 5355 | . . . . . . 7 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
14 | 12, 13 | eqtrdi 2794 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = 𝑥) |
15 | 14 | eleq1d 2822 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴)) |
16 | 10, 15 | sylibrd 262 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
17 | 16 | exlimivv 1940 | . . 3 ⊢ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
18 | 5, 17 | syli 39 | . 2 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
19 | 18 | imp 410 | 1 ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 〈cop 4547 ∩ cint 4859 × cxp 5549 dom cdm 5551 Rel wrel 5556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-int 4860 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-dm 5561 |
This theorem is referenced by: 1stdm 7811 fundmen 8708 |
Copyright terms: Public domain | W3C validator |