MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2t Structured version   Visualization version   GIF version

Theorem cnmpt2t 22257
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Assertion
Ref Expression
cnmpt2t (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2t
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6643 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑢, 𝑣⟩))
2 df-ov 7133 . . . . . . 7 (𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑢, 𝑣⟩)
31, 2syl6eqr 2874 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧) = (𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣))
4 fveq2 6643 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧) = ((𝑥𝑋, 𝑦𝑌𝐵)‘⟨𝑢, 𝑣⟩))
5 df-ov 7133 . . . . . . 7 (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣) = ((𝑥𝑋, 𝑦𝑌𝐵)‘⟨𝑢, 𝑣⟩)
64, 5syl6eqr 2874 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧) = (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣))
73, 6opeq12d 4784 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩ = ⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩)
87mpompt 7240 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑢𝑋, 𝑣𝑌 ↦ ⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩)
9 nfcv 2974 . . . . . . 7 𝑥𝑢
10 nfmpo1 7208 . . . . . . 7 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
11 nfcv 2974 . . . . . . 7 𝑥𝑣
129, 10, 11nfov 7160 . . . . . 6 𝑥(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣)
13 nfmpo1 7208 . . . . . . 7 𝑥(𝑥𝑋, 𝑦𝑌𝐵)
149, 13, 11nfov 7160 . . . . . 6 𝑥(𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)
1512, 14nfop 4792 . . . . 5 𝑥⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩
16 nfcv 2974 . . . . . . 7 𝑦𝑢
17 nfmpo2 7209 . . . . . . 7 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
18 nfcv 2974 . . . . . . 7 𝑦𝑣
1916, 17, 18nfov 7160 . . . . . 6 𝑦(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣)
20 nfmpo2 7209 . . . . . . 7 𝑦(𝑥𝑋, 𝑦𝑌𝐵)
2116, 20, 18nfov 7160 . . . . . 6 𝑦(𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)
2219, 21nfop 4792 . . . . 5 𝑦⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩
23 nfcv 2974 . . . . 5 𝑢⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩
24 nfcv 2974 . . . . 5 𝑣⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩
25 oveq12 7139 . . . . . 6 ((𝑢 = 𝑥𝑣 = 𝑦) → (𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣) = (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦))
26 oveq12 7139 . . . . . 6 ((𝑢 = 𝑥𝑣 = 𝑦) → (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣) = (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦))
2725, 26opeq12d 4784 . . . . 5 ((𝑢 = 𝑥𝑣 = 𝑦) → ⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩ = ⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩)
2815, 22, 23, 24, 27cbvmpo 7222 . . . 4 (𝑢𝑋, 𝑣𝑌 ↦ ⟨(𝑢(𝑥𝑋, 𝑦𝑌𝐴)𝑣), (𝑢(𝑥𝑋, 𝑦𝑌𝐵)𝑣)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩)
298, 28eqtri 2844 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩)
30 cnmpt21.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
31 cnmpt21.k . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
32 txtopon 22175 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
3330, 31, 32syl2anc 587 . . . 4 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
34 toponuni 21498 . . . 4 ((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
35 mpteq1 5127 . . . 4 ((𝑋 × 𝑌) = (𝐽 ×t 𝐾) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩))
3633, 34, 353syl 18 . . 3 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩))
37 simp2 1134 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → 𝑥𝑋)
38 simp3 1135 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → 𝑦𝑌)
39 cnmpt21.a . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
40 cntop2 21825 . . . . . . . . . . . 12 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
4139, 40syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ Top)
42 toptopon2 21502 . . . . . . . . . . 11 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
4341, 42sylib 221 . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
44 cnf2 21833 . . . . . . . . . 10 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
4533, 43, 39, 44syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
46 eqid 2821 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
4746fmpo 7741 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
4845, 47sylibr 237 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 𝐿)
49 rsp2 3201 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 → ((𝑥𝑋𝑦𝑌) → 𝐴 𝐿))
5048, 49syl 17 . . . . . . 7 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴 𝐿))
51503impib 1113 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴 𝐿)
5246ovmpt4g 7271 . . . . . 6 ((𝑥𝑋𝑦𝑌𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
5337, 38, 51, 52syl3anc 1368 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
54 cnmpt2t.b . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
55 cntop2 21825 . . . . . . . . . . . 12 ((𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top)
5654, 55syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ Top)
57 toptopon2 21502 . . . . . . . . . . 11 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
5856, 57sylib 221 . . . . . . . . . 10 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
59 cnf2 21833 . . . . . . . . . 10 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶ 𝑀)
6033, 58, 54, 59syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶ 𝑀)
61 eqid 2821 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
6261fmpo 7741 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝐵 𝑀 ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶ 𝑀)
6360, 62sylibr 237 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 𝑀)
64 rsp2 3201 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 𝑀 → ((𝑥𝑋𝑦𝑌) → 𝐵 𝑀))
6563, 64syl 17 . . . . . . 7 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐵 𝑀))
66653impib 1113 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵 𝑀)
6761ovmpt4g 7271 . . . . . 6 ((𝑥𝑋𝑦𝑌𝐵 𝑀) → (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦) = 𝐵)
6837, 38, 66, 67syl3anc 1368 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦) = 𝐵)
6953, 68opeq12d 4784 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → ⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩ = ⟨𝐴, 𝐵⟩)
7069mpoeq3dva 7205 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦), (𝑥(𝑥𝑋, 𝑦𝑌𝐵)𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩))
7129, 36, 703eqtr3a 2880 . 2 (𝜑 → (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩))
72 eqid 2821 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
73 eqid 2821 . . . 4 (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) = (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩)
7472, 73txcnmpt 22208 . . 3 (((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
7539, 54, 74syl2anc 587 . 2 (𝜑 → (𝑧 (𝐽 ×t 𝐾) ↦ ⟨((𝑥𝑋, 𝑦𝑌𝐴)‘𝑧), ((𝑥𝑋, 𝑦𝑌𝐵)‘𝑧)⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
7671, 75eqeltrrd 2913 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  cop 4546   cuni 4811  cmpt 5119   × cxp 5526  wf 6324  cfv 6328  (class class class)co 7130  cmpo 7132  Topctop 21477  TopOnctopon 21494   Cn ccn 21808   ×t ctx 22144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-map 8383  df-topgen 16696  df-top 21478  df-topon 21495  df-bases 21530  df-cn 21811  df-tx 22146
This theorem is referenced by:  cnmpt22  22258  txhmeo  22387  txswaphmeo  22389  txsconnlem  32495
  Copyright terms: Public domain W3C validator