Step | Hyp | Ref
| Expression |
1 | | fveq2 6888 |
. . . . . . 7
β’ (π§ = β¨π’, π£β© β ((π₯ β π, π¦ β π β¦ π΄)βπ§) = ((π₯ β π, π¦ β π β¦ π΄)ββ¨π’, π£β©)) |
2 | | df-ov 7408 |
. . . . . . 7
β’ (π’(π₯ β π, π¦ β π β¦ π΄)π£) = ((π₯ β π, π¦ β π β¦ π΄)ββ¨π’, π£β©) |
3 | 1, 2 | eqtr4di 2790 |
. . . . . 6
β’ (π§ = β¨π’, π£β© β ((π₯ β π, π¦ β π β¦ π΄)βπ§) = (π’(π₯ β π, π¦ β π β¦ π΄)π£)) |
4 | | fveq2 6888 |
. . . . . . 7
β’ (π§ = β¨π’, π£β© β ((π₯ β π, π¦ β π β¦ π΅)βπ§) = ((π₯ β π, π¦ β π β¦ π΅)ββ¨π’, π£β©)) |
5 | | df-ov 7408 |
. . . . . . 7
β’ (π’(π₯ β π, π¦ β π β¦ π΅)π£) = ((π₯ β π, π¦ β π β¦ π΅)ββ¨π’, π£β©) |
6 | 4, 5 | eqtr4di 2790 |
. . . . . 6
β’ (π§ = β¨π’, π£β© β ((π₯ β π, π¦ β π β¦ π΅)βπ§) = (π’(π₯ β π, π¦ β π β¦ π΅)π£)) |
7 | 3, 6 | opeq12d 4880 |
. . . . 5
β’ (π§ = β¨π’, π£β© β β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β© = β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β©) |
8 | 7 | mpompt 7518 |
. . . 4
β’ (π§ β (π Γ π) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π’ β π, π£ β π β¦ β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β©) |
9 | | nfcv 2903 |
. . . . . . 7
β’
β²π₯π’ |
10 | | nfmpo1 7485 |
. . . . . . 7
β’
β²π₯(π₯ β π, π¦ β π β¦ π΄) |
11 | | nfcv 2903 |
. . . . . . 7
β’
β²π₯π£ |
12 | 9, 10, 11 | nfov 7435 |
. . . . . 6
β’
β²π₯(π’(π₯ β π, π¦ β π β¦ π΄)π£) |
13 | | nfmpo1 7485 |
. . . . . . 7
β’
β²π₯(π₯ β π, π¦ β π β¦ π΅) |
14 | 9, 13, 11 | nfov 7435 |
. . . . . 6
β’
β²π₯(π’(π₯ β π, π¦ β π β¦ π΅)π£) |
15 | 12, 14 | nfop 4888 |
. . . . 5
β’
β²π₯β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β© |
16 | | nfcv 2903 |
. . . . . . 7
β’
β²π¦π’ |
17 | | nfmpo2 7486 |
. . . . . . 7
β’
β²π¦(π₯ β π, π¦ β π β¦ π΄) |
18 | | nfcv 2903 |
. . . . . . 7
β’
β²π¦π£ |
19 | 16, 17, 18 | nfov 7435 |
. . . . . 6
β’
β²π¦(π’(π₯ β π, π¦ β π β¦ π΄)π£) |
20 | | nfmpo2 7486 |
. . . . . . 7
β’
β²π¦(π₯ β π, π¦ β π β¦ π΅) |
21 | 16, 20, 18 | nfov 7435 |
. . . . . 6
β’
β²π¦(π’(π₯ β π, π¦ β π β¦ π΅)π£) |
22 | 19, 21 | nfop 4888 |
. . . . 5
β’
β²π¦β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β© |
23 | | nfcv 2903 |
. . . . 5
β’
β²π’β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β© |
24 | | nfcv 2903 |
. . . . 5
β’
β²π£β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β© |
25 | | oveq12 7414 |
. . . . . 6
β’ ((π’ = π₯ β§ π£ = π¦) β (π’(π₯ β π, π¦ β π β¦ π΄)π£) = (π₯(π₯ β π, π¦ β π β¦ π΄)π¦)) |
26 | | oveq12 7414 |
. . . . . 6
β’ ((π’ = π₯ β§ π£ = π¦) β (π’(π₯ β π, π¦ β π β¦ π΅)π£) = (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)) |
27 | 25, 26 | opeq12d 4880 |
. . . . 5
β’ ((π’ = π₯ β§ π£ = π¦) β β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β© = β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β©) |
28 | 15, 22, 23, 24, 27 | cbvmpo 7499 |
. . . 4
β’ (π’ β π, π£ β π β¦ β¨(π’(π₯ β π, π¦ β π β¦ π΄)π£), (π’(π₯ β π, π¦ β π β¦ π΅)π£)β©) = (π₯ β π, π¦ β π β¦ β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β©) |
29 | 8, 28 | eqtri 2760 |
. . 3
β’ (π§ β (π Γ π) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π₯ β π, π¦ β π β¦ β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β©) |
30 | | cnmpt21.j |
. . . . 5
β’ (π β π½ β (TopOnβπ)) |
31 | | cnmpt21.k |
. . . . 5
β’ (π β πΎ β (TopOnβπ)) |
32 | | txtopon 23086 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Γt πΎ) β (TopOnβ(π Γ π))) |
33 | 30, 31, 32 | syl2anc 584 |
. . . 4
β’ (π β (π½ Γt πΎ) β (TopOnβ(π Γ π))) |
34 | | toponuni 22407 |
. . . 4
β’ ((π½ Γt πΎ) β (TopOnβ(π Γ π)) β (π Γ π) = βͺ (π½ Γt πΎ)) |
35 | | mpteq1 5240 |
. . . 4
β’ ((π Γ π) = βͺ (π½ Γt πΎ) β (π§ β (π Γ π) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©)) |
36 | 33, 34, 35 | 3syl 18 |
. . 3
β’ (π β (π§ β (π Γ π) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©)) |
37 | | simp2 1137 |
. . . . . 6
β’ ((π β§ π₯ β π β§ π¦ β π) β π₯ β π) |
38 | | simp3 1138 |
. . . . . 6
β’ ((π β§ π₯ β π β§ π¦ β π) β π¦ β π) |
39 | | cnmpt21.a |
. . . . . . . . . . . 12
β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) |
40 | | cntop2 22736 |
. . . . . . . . . . . 12
β’ ((π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ) β πΏ β Top) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
β’ (π β πΏ β Top) |
42 | | toptopon2 22411 |
. . . . . . . . . . 11
β’ (πΏ β Top β πΏ β (TopOnββͺ πΏ)) |
43 | 41, 42 | sylib 217 |
. . . . . . . . . 10
β’ (π β πΏ β (TopOnββͺ πΏ)) |
44 | | cnf2 22744 |
. . . . . . . . . 10
β’ (((π½ Γt πΎ) β (TopOnβ(π Γ π)) β§ πΏ β (TopOnββͺ πΏ)
β§ (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) β (π₯ β π, π¦ β π β¦ π΄):(π Γ π)βΆβͺ πΏ) |
45 | 33, 43, 39, 44 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β (π₯ β π, π¦ β π β¦ π΄):(π Γ π)βΆβͺ πΏ) |
46 | | eqid 2732 |
. . . . . . . . . 10
β’ (π₯ β π, π¦ β π β¦ π΄) = (π₯ β π, π¦ β π β¦ π΄) |
47 | 46 | fmpo 8050 |
. . . . . . . . 9
β’
(βπ₯ β
π βπ¦ β π π΄ β βͺ πΏ β (π₯ β π, π¦ β π β¦ π΄):(π Γ π)βΆβͺ πΏ) |
48 | 45, 47 | sylibr 233 |
. . . . . . . 8
β’ (π β βπ₯ β π βπ¦ β π π΄ β βͺ πΏ) |
49 | | rsp2 3274 |
. . . . . . . 8
β’
(βπ₯ β
π βπ¦ β π π΄ β βͺ πΏ β ((π₯ β π β§ π¦ β π) β π΄ β βͺ πΏ)) |
50 | 48, 49 | syl 17 |
. . . . . . 7
β’ (π β ((π₯ β π β§ π¦ β π) β π΄ β βͺ πΏ)) |
51 | 50 | 3impib 1116 |
. . . . . 6
β’ ((π β§ π₯ β π β§ π¦ β π) β π΄ β βͺ πΏ) |
52 | 46 | ovmpt4g 7551 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π β§ π΄ β βͺ πΏ) β (π₯(π₯ β π, π¦ β π β¦ π΄)π¦) = π΄) |
53 | 37, 38, 51, 52 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π₯ β π β§ π¦ β π) β (π₯(π₯ β π, π¦ β π β¦ π΄)π¦) = π΄) |
54 | | cnmpt2t.b |
. . . . . . . . . . . 12
β’ (π β (π₯ β π, π¦ β π β¦ π΅) β ((π½ Γt πΎ) Cn π)) |
55 | | cntop2 22736 |
. . . . . . . . . . . 12
β’ ((π₯ β π, π¦ β π β¦ π΅) β ((π½ Γt πΎ) Cn π) β π β Top) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β Top) |
57 | | toptopon2 22411 |
. . . . . . . . . . 11
β’ (π β Top β π β (TopOnββͺ π)) |
58 | 56, 57 | sylib 217 |
. . . . . . . . . 10
β’ (π β π β (TopOnββͺ π)) |
59 | | cnf2 22744 |
. . . . . . . . . 10
β’ (((π½ Γt πΎ) β (TopOnβ(π Γ π)) β§ π β (TopOnββͺ π)
β§ (π₯ β π, π¦ β π β¦ π΅) β ((π½ Γt πΎ) Cn π)) β (π₯ β π, π¦ β π β¦ π΅):(π Γ π)βΆβͺ π) |
60 | 33, 58, 54, 59 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β (π₯ β π, π¦ β π β¦ π΅):(π Γ π)βΆβͺ π) |
61 | | eqid 2732 |
. . . . . . . . . 10
β’ (π₯ β π, π¦ β π β¦ π΅) = (π₯ β π, π¦ β π β¦ π΅) |
62 | 61 | fmpo 8050 |
. . . . . . . . 9
β’
(βπ₯ β
π βπ¦ β π π΅ β βͺ π β (π₯ β π, π¦ β π β¦ π΅):(π Γ π)βΆβͺ π) |
63 | 60, 62 | sylibr 233 |
. . . . . . . 8
β’ (π β βπ₯ β π βπ¦ β π π΅ β βͺ π) |
64 | | rsp2 3274 |
. . . . . . . 8
β’
(βπ₯ β
π βπ¦ β π π΅ β βͺ π β ((π₯ β π β§ π¦ β π) β π΅ β βͺ π)) |
65 | 63, 64 | syl 17 |
. . . . . . 7
β’ (π β ((π₯ β π β§ π¦ β π) β π΅ β βͺ π)) |
66 | 65 | 3impib 1116 |
. . . . . 6
β’ ((π β§ π₯ β π β§ π¦ β π) β π΅ β βͺ π) |
67 | 61 | ovmpt4g 7551 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π β§ π΅ β βͺ π) β (π₯(π₯ β π, π¦ β π β¦ π΅)π¦) = π΅) |
68 | 37, 38, 66, 67 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π₯ β π β§ π¦ β π) β (π₯(π₯ β π, π¦ β π β¦ π΅)π¦) = π΅) |
69 | 53, 68 | opeq12d 4880 |
. . . 4
β’ ((π β§ π₯ β π β§ π¦ β π) β β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β© = β¨π΄, π΅β©) |
70 | 69 | mpoeq3dva 7482 |
. . 3
β’ (π β (π₯ β π, π¦ β π β¦ β¨(π₯(π₯ β π, π¦ β π β¦ π΄)π¦), (π₯(π₯ β π, π¦ β π β¦ π΅)π¦)β©) = (π₯ β π, π¦ β π β¦ β¨π΄, π΅β©)) |
71 | 29, 36, 70 | 3eqtr3a 2796 |
. 2
β’ (π β (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π₯ β π, π¦ β π β¦ β¨π΄, π΅β©)) |
72 | | eqid 2732 |
. . . 4
β’ βͺ (π½
Γt πΎ) =
βͺ (π½ Γt πΎ) |
73 | | eqid 2732 |
. . . 4
β’ (π§ β βͺ (π½
Γt πΎ)
β¦ β¨((π₯ β
π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) = (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) |
74 | 72, 73 | txcnmpt 23119 |
. . 3
β’ (((π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ) β§ (π₯ β π, π¦ β π β¦ π΅) β ((π½ Γt πΎ) Cn π)) β (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) β ((π½ Γt πΎ) Cn (πΏ Γt π))) |
75 | 39, 54, 74 | syl2anc 584 |
. 2
β’ (π β (π§ β βͺ (π½ Γt πΎ) β¦ β¨((π₯ β π, π¦ β π β¦ π΄)βπ§), ((π₯ β π, π¦ β π β¦ π΅)βπ§)β©) β ((π½ Γt πΎ) Cn (πΏ Γt π))) |
76 | 71, 75 | eqeltrrd 2834 |
1
β’ (π β (π₯ β π, π¦ β π β¦ β¨π΄, π΅β©) β ((π½ Γt πΎ) Cn (πΏ Γt π))) |