![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmncom | Structured version Visualization version GIF version |
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
cmncom | ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ablcom.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | iscmn 19738 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
4 | 3 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ CMnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
5 | rsp2 3270 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
6 | 5 | imp 406 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
7 | 4, 6 | sylan 579 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
8 | 7 | caovcomg 7611 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
9 | 8 | 3impb 1113 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 +gcplusg 17227 Mndcmnd 18688 CMndccmn 19729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7418 df-cmn 19731 |
This theorem is referenced by: ablcom 19748 cmn32 19749 cmn4 19750 cmn12 19751 cmnbascntr 19754 rinvmod 19755 mulgnn0di 19774 ghmcmn 19780 subcmn 19786 cntzcmn 19789 prdscmnd 19810 srgcom 20140 srgbinomlem4 20163 csrgbinom 20166 crngcom 20185 ip2di 21567 lply1binom 22223 chfacfscmulgsum 22756 chfacfpmmulgsum 22760 cpmadugsumlemF 22772 cmn246135 32748 cmn145236 32749 omndadd2d 32783 rlocaddval 32977 ofldchr 33024 elrspunsn 33140 primrootsunit1 41562 aks6d1c5lem3 41603 |
Copyright terms: Public domain | W3C validator |