Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmncom Structured version   Visualization version   GIF version

Theorem cmncom 18902
 Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmncom ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cmncom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 ablcom.p . . . . . 6 + = (+g𝐺)
31, 2iscmn 18893 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43simprbi 499 . . . 4 (𝐺 ∈ CMnd → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 rsp2 3200 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
65imp 409 . . . 4 ((∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
74, 6sylan 582 . . 3 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
87caovcomg 7321 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
983impb 1111 1 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  Mndcmnd 17890  CMndccmn 18885 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-iota 6290  df-fv 6339  df-ov 7136  df-cmn 18887 This theorem is referenced by:  ablcom  18903  cmn32  18904  cmn4  18905  cmn12  18906  rinvmod  18908  mulgnn0di  18925  ghmcmn  18931  subcmn  18936  cntzcmn  18939  prdscmnd  18960  srgcom  19254  srgbinomlem4  19272  csrgbinom  19275  crngcom  19291  lply1binom  20450  ip2di  20761  chfacfscmulgsum  21444  chfacfpmmulgsum  21448  cpmadugsumlemF  21460  omndadd2d  30717  ofldchr  30895
 Copyright terms: Public domain W3C validator