MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmncom Structured version   Visualization version   GIF version

Theorem cmncom 19714
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmncom ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cmncom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 ablcom.p . . . . . 6 + = (+g𝐺)
31, 2iscmn 19705 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43simprbi 496 . . . 4 (𝐺 ∈ CMnd → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 rsp2 3250 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
65imp 406 . . . 4 ((∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
74, 6sylan 580 . . 3 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
87caovcomg 7549 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
983impb 1114 1 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  Mndcmnd 18646  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-cmn 19698
This theorem is referenced by:  ablcom  19715  cmn32  19716  cmn4  19717  cmn12  19718  cmnbascntr  19721  rinvmod  19722  mulgnn0di  19741  ghmcmn  19747  subcmn  19753  cntzcmn  19756  prdscmnd  19777  omndadd2d  20046  srgcom  20128  srgbinomlem4  20151  csrgbinom  20154  crngcom  20173  ofldchr  21517  ip2di  21582  lply1binom  22228  chfacfscmulgsum  22778  chfacfpmmulgsum  22782  cpmadugsumlemF  22794  cmn246135  33023  cmn145236  33024  gsumwun  33054  rlocaddval  33244  elrspunsn  33403  evl1deg2  33549  evl1deg3  33550  primrootsunit1  42213  aks6d1c5lem3  42253
  Copyright terms: Public domain W3C validator