MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmncom Structured version   Visualization version   GIF version

Theorem cmncom 19413
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmncom ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cmncom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 ablcom.p . . . . . 6 + = (+g𝐺)
31, 2iscmn 19404 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43simprbi 497 . . . 4 (𝐺 ∈ CMnd → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 rsp2 3137 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
65imp 407 . . . 4 ((∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
74, 6sylan 580 . . 3 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
87caovcomg 7457 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
983impb 1114 1 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cfv 6426  (class class class)co 7267  Basecbs 16922  +gcplusg 16972  Mndcmnd 18395  CMndccmn 19396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-iota 6384  df-fv 6434  df-ov 7270  df-cmn 19398
This theorem is referenced by:  ablcom  19414  cmn32  19415  cmn4  19416  cmn12  19417  rinvmod  19420  mulgnn0di  19437  ghmcmn  19443  subcmn  19448  cntzcmn  19451  prdscmnd  19472  srgcom  19771  srgbinomlem4  19789  csrgbinom  19792  crngcom  19811  ip2di  20856  lply1binom  21487  chfacfscmulgsum  22019  chfacfpmmulgsum  22023  cpmadugsumlemF  22035  omndadd2d  31342  ofldchr  31521
  Copyright terms: Public domain W3C validator