| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmncom | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| cmncom | ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | ablcom.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19686 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 4 | 3 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ CMnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 5 | rsp2 3246 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
| 6 | 5 | imp 406 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 7 | 4, 6 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 8 | 7 | caovcomg 7548 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 9 | 8 | 3impb 1114 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cmn 19679 |
| This theorem is referenced by: ablcom 19696 cmn32 19697 cmn4 19698 cmn12 19699 cmnbascntr 19702 rinvmod 19703 mulgnn0di 19722 ghmcmn 19728 subcmn 19734 cntzcmn 19737 prdscmnd 19758 omndadd2d 20027 srgcom 20109 srgbinomlem4 20132 csrgbinom 20135 crngcom 20154 ofldchr 21501 ip2di 21566 lply1binom 22213 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 cpmadugsumlemF 22779 cmn246135 33000 cmn145236 33001 gsumwun 33031 rlocaddval 33221 elrspunsn 33379 evl1deg2 33525 evl1deg3 33526 primrootsunit1 42073 aks6d1c5lem3 42113 |
| Copyright terms: Public domain | W3C validator |