Proof of Theorem cnmpt22
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ov 7435 | . . . 4
⊢ (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) | 
| 2 |  | cnmpt21.j | . . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 3 |  | cnmpt21.k | . . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| 4 |  | txtopon 23600 | . . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 6 |  | cnmpt22.l | . . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | 
| 7 |  | cnmpt21.a | . . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | 
| 8 |  | cnf2 23258 | . . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) | 
| 9 | 5, 6, 7, 8 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) | 
| 10 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | 
| 11 | 10 | fmpo 8094 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) | 
| 12 | 9, 11 | sylibr 234 | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) | 
| 13 |  | rsp2 3276 | . . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) | 
| 14 | 12, 13 | syl 17 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) | 
| 15 | 14 | 3impib 1116 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍) | 
| 16 |  | cnmpt22.m | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) | 
| 17 |  | cnmpt2t.b | . . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | 
| 18 |  | cnf2 23258 | . . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘𝑊) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) | 
| 19 | 5, 16, 17, 18 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) | 
| 20 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | 
| 21 | 20 | fmpo 8094 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) | 
| 22 | 19, 21 | sylibr 234 | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊) | 
| 23 |  | rsp2 3276 | . . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) | 
| 24 | 22, 23 | syl 17 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) | 
| 25 | 24 | 3impib 1116 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊) | 
| 26 | 15, 25 | jca 511 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊)) | 
| 27 |  | txtopon 23600 | . . . . . . . . . . 11
⊢ ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑊)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) | 
| 28 | 6, 16, 27 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) | 
| 29 |  | cnmpt22.c | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) | 
| 30 |  | cntop2 23250 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ Top) | 
| 32 |  | toptopon2 22925 | . . . . . . . . . . 11
⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | 
| 33 | 31, 32 | sylib 218 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) | 
| 34 |  | cnf2 23258 | . . . . . . . . . 10
⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁)
∧ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) | 
| 35 | 28, 33, 29, 34 | syl3anc 1372 | . . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) | 
| 36 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) = (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) | 
| 37 | 36 | fmpo 8094 | . . . . . . . . 9
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) | 
| 38 | 35, 37 | sylibr 234 | . . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁) | 
| 39 |  | r2al 3194 | . . . . . . . 8
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) | 
| 40 | 38, 39 | sylib 218 | . . . . . . 7
⊢ (𝜑 → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) | 
| 41 | 40 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) | 
| 42 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑍 ↔ 𝐴 ∈ 𝑍)) | 
| 43 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑤 = 𝐵 → (𝑤 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | 
| 44 | 42, 43 | bi2anan9 638 | . . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → ((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) ↔ (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊))) | 
| 45 |  | cnmpt22.d | . . . . . . . . 9
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) | 
| 46 | 45 | eleq1d 2825 | . . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝐶 ∈ ∪ 𝑁 ↔ 𝐷 ∈ ∪ 𝑁)) | 
| 47 | 44, 46 | imbi12d 344 | . . . . . . 7
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) ↔ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) | 
| 48 | 47 | spc2gv 3599 | . . . . . 6
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) → ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) | 
| 49 | 26, 41, 26, 48 | syl3c 66 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ ∪ 𝑁) | 
| 50 | 45, 36 | ovmpoga 7588 | . . . . 5
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ∧ 𝐷 ∈ ∪ 𝑁) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) | 
| 51 | 15, 25, 49, 50 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) | 
| 52 | 1, 51 | eqtr3id 2790 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) = 𝐷) | 
| 53 | 52 | mpoeq3dva 7511 | . 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷)) | 
| 54 | 2, 3, 7, 17 | cnmpt2t 23682 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) | 
| 55 | 2, 3, 54, 29 | cnmpt21f 23681 | . 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | 
| 56 | 53, 55 | eqeltrrd 2841 | 1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |