Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Visualization version   GIF version

Theorem islptre 41898
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1 𝐽 = (topGen‘ran (,))
islptre.2 (𝜑𝐴 ⊆ ℝ)
islptre.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
islptre (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐽,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem islptre
Dummy variables 𝑛 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6 𝐽 = (topGen‘ran (,))
2 retopon 23371 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2909 . . . . 5 𝐽 ∈ (TopOn‘ℝ)
43topontopi 21522 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 islptre.2 . . 3 (𝜑𝐴 ⊆ ℝ)
7 islptre.3 . . 3 (𝜑𝐵 ∈ ℝ)
83toponunii 21523 . . . 4 ℝ = 𝐽
98islp2 21752 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
105, 6, 7, 9syl3anc 1367 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
11 simp1r 1194 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12 iooretop 23373 . . . . . . . . . . . 12 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
1312, 1eleqtrri 2912 . . . . . . . . . . 11 (𝑎(,)𝑏) ∈ 𝐽
1413a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ 𝐽)
15 snssi 4740 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ (𝑎(,)𝑏))
1615adantl 484 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ (𝑎(,)𝑏))
17 ssidd 3989 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))
18 sseq2 3992 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → ({𝐵} ⊆ 𝑣 ↔ {𝐵} ⊆ (𝑎(,)𝑏)))
19 sseq1 3991 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → (𝑣 ⊆ (𝑎(,)𝑏) ↔ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)))
2018, 19anbi12d 632 . . . . . . . . . . 11 (𝑣 = (𝑎(,)𝑏) → (({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)) ↔ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))))
2120rspcev 3622 . . . . . . . . . 10 (((𝑎(,)𝑏) ∈ 𝐽 ∧ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
2214, 16, 17, 21syl12anc 834 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
23 ioossre 12797 . . . . . . . . 9 (𝑎(,)𝑏) ⊆ ℝ
2422, 23jctil 522 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏))))
25 elioore 12767 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ)
2625snssd 4741 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ ℝ)
2726adantl 484 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ ℝ)
288isnei 21710 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
294, 27, 28sylancr 589 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
3024, 29mpbird 259 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
31303adant1 1126 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
32 ineq1 4180 . . . . . . . 8 (𝑛 = (𝑎(,)𝑏) → (𝑛 ∩ (𝐴 ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})))
3332neeq1d 3075 . . . . . . 7 (𝑛 = (𝑎(,)𝑏) → ((𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
3433rspccva 3621 . . . . . 6 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ∧ (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵})) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
3511, 31, 34syl2anc 586 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
36353exp 1115 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
3736ralrimivv 3190 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
387snssd 4741 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℝ)
398isnei 21710 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
404, 38, 39sylancr 589 . . . . . . . 8 (𝜑 → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
4140simplbda 502 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))
421eleq2i 2904 . . . . . . . . . . . . . . 15 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
4342biimpi 218 . . . . . . . . . . . . . 14 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
44433ad2ant2 1130 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝑣 ∈ (topGen‘ran (,)))
45 simp1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝜑)
46 simp3l 1197 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → {𝐵} ⊆ 𝑣)
47 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → {𝐵} ⊆ 𝑣)
487adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵 ∈ ℝ)
49 snssg 4716 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5147, 50mpbird 259 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵𝑣)
5245, 46, 51syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝐵𝑣)
5344, 52jca 514 . . . . . . . . . . . 12 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣))
54 tg2 21572 . . . . . . . . . . . 12 ((𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣) → ∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣))
55 ioof 12834 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
56 ffn 6513 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
57 ovelrn 7323 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏)))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
5958biimpi 218 . . . . . . . . . . . . . . 15 (𝑢 ∈ ran (,) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6059adantr 483 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
61 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵𝑢)
62 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢 = (𝑎(,)𝑏))
6361, 62eleqtrd 2915 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵 ∈ (𝑎(,)𝑏))
64 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢𝑣)
6562, 64eqsstrrd 4005 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ 𝑣)
6663, 65jca 514 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
6766ex 415 . . . . . . . . . . . . . . . . 17 ((𝐵𝑢𝑢𝑣) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6867adantl 484 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6968reximdv 3273 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7069reximdv 3273 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7160, 70mpd 15 . . . . . . . . . . . . 13 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7271rexlimiva 3281 . . . . . . . . . . . 12 (∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7353, 54, 723syl 18 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
74 simpl3r 1225 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → 𝑣𝑛)
7574adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → 𝑣𝑛)
76 sstr 3974 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ 𝑣𝑣𝑛) → (𝑎(,)𝑏) ⊆ 𝑛)
7776expcom 416 . . . . . . . . . . . . . . 15 (𝑣𝑛 → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7875, 77syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7978anim2d 613 . . . . . . . . . . . . 13 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8079reximdva 3274 . . . . . . . . . . . 12 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8180reximdva 3274 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8273, 81mpd 15 . . . . . . . . . 10 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
83823exp 1115 . . . . . . . . 9 (𝜑 → (𝑣𝐽 → (({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))))
8483rexlimdv 3283 . . . . . . . 8 (𝜑 → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8584adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8641, 85mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
8786adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
88 nfv 1911 . . . . . . . 8 𝑎𝜑
89 nfra1 3219 . . . . . . . 8 𝑎𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9088, 89nfan 1896 . . . . . . 7 𝑎(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
91 nfv 1911 . . . . . . 7 𝑎 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9290, 91nfan 1896 . . . . . 6 𝑎((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
93 nfv 1911 . . . . . 6 𝑎(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
94 nfv 1911 . . . . . . . . . . 11 𝑏𝜑
95 nfra2w 3227 . . . . . . . . . . 11 𝑏𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9694, 95nfan 1896 . . . . . . . . . 10 𝑏(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
97 nfv 1911 . . . . . . . . . 10 𝑏 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9896, 97nfan 1896 . . . . . . . . 9 𝑏((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
99 nfv 1911 . . . . . . . . 9 𝑏 𝑎 ∈ ℝ*
10098, 99nfan 1896 . . . . . . . 8 𝑏(((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*)
101 nfv 1911 . . . . . . . 8 𝑏(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
102 inss1 4204 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑎(,)𝑏)
103 simp3r 1198 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎(,)𝑏) ⊆ 𝑛)
104102, 103sstrid 3977 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ 𝑛)
105 inss2 4205 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
106105a1i 11 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵}))
107104, 106ssind 4208 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})))
108 simpllr 774 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
1091083ad2ant1 1129 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
110 simp1r 1194 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑎 ∈ ℝ*)
111 simp2 1133 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑏 ∈ ℝ*)
112110, 111jca 514 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
113 simp3l 1197 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝐵 ∈ (𝑎(,)𝑏))
114 rsp2 3213 . . . . . . . . . . 11 (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
115109, 112, 113, 114syl3c 66 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
116 ssn0 4353 . . . . . . . . . 10 ((((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})) ∧ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
117107, 115, 116syl2anc 586 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
1181173exp 1115 . . . . . . . 8 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (𝑏 ∈ ℝ* → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
119100, 101, 118rexlimd 3317 . . . . . . 7 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
120119ex 415 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑎 ∈ ℝ* → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12192, 93, 120rexlimd 3317 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
12287, 121mpd 15 . . . 4 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
123122ralrimiva 3182 . . 3 ((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12437, 123impbida 799 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12510, 124bitrd 281 1 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4566   × cxp 5552  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  cr 10535  *cxr 10673  (,)cioo 12737  topGenctg 16710  Topctop 21500  TopOnctopon 21517  neicnei 21704  limPtclp 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-ioo 12741  df-topgen 16716  df-top 21501  df-topon 21518  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743
This theorem is referenced by:  lptioo2  41910  lptioo1  41911  lptre2pt  41919
  Copyright terms: Public domain W3C validator