Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Visualization version   GIF version

Theorem islptre 40741
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1 𝐽 = (topGen‘ran (,))
islptre.2 (𝜑𝐴 ⊆ ℝ)
islptre.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
islptre (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐽,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem islptre
Dummy variables 𝑛 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6 𝐽 = (topGen‘ran (,))
2 retopon 22975 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2854 . . . . 5 𝐽 ∈ (TopOn‘ℝ)
43topontopi 21127 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 islptre.2 . . 3 (𝜑𝐴 ⊆ ℝ)
7 islptre.3 . . 3 (𝜑𝐵 ∈ ℝ)
83toponunii 21128 . . . 4 ℝ = 𝐽
98islp2 21357 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
105, 6, 7, 9syl3anc 1439 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
11 simp1r 1212 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12 iooretop 22977 . . . . . . . . . . . 12 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
1312, 1eleqtrri 2857 . . . . . . . . . . 11 (𝑎(,)𝑏) ∈ 𝐽
1413a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ 𝐽)
15 snssi 4570 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ (𝑎(,)𝑏))
1615adantl 475 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ (𝑎(,)𝑏))
17 ssidd 3842 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))
18 sseq2 3845 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → ({𝐵} ⊆ 𝑣 ↔ {𝐵} ⊆ (𝑎(,)𝑏)))
19 sseq1 3844 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → (𝑣 ⊆ (𝑎(,)𝑏) ↔ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)))
2018, 19anbi12d 624 . . . . . . . . . . 11 (𝑣 = (𝑎(,)𝑏) → (({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)) ↔ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))))
2120rspcev 3510 . . . . . . . . . 10 (((𝑎(,)𝑏) ∈ 𝐽 ∧ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
2214, 16, 17, 21syl12anc 827 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
23 ioossre 12547 . . . . . . . . 9 (𝑎(,)𝑏) ⊆ ℝ
2422, 23jctil 515 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏))))
25 elioore 12517 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ)
2625snssd 4571 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ ℝ)
2726adantl 475 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ ℝ)
288isnei 21315 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
294, 27, 28sylancr 581 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
3024, 29mpbird 249 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
31303adant1 1121 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
32 ineq1 4029 . . . . . . . 8 (𝑛 = (𝑎(,)𝑏) → (𝑛 ∩ (𝐴 ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})))
3332neeq1d 3027 . . . . . . 7 (𝑛 = (𝑎(,)𝑏) → ((𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
3433rspccva 3509 . . . . . 6 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ∧ (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵})) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
3511, 31, 34syl2anc 579 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
36353exp 1109 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
3736ralrimivv 3151 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
387snssd 4571 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℝ)
398isnei 21315 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
404, 38, 39sylancr 581 . . . . . . . 8 (𝜑 → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
4140simplbda 495 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))
421eleq2i 2850 . . . . . . . . . . . . . . 15 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
4342biimpi 208 . . . . . . . . . . . . . 14 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
44433ad2ant2 1125 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝑣 ∈ (topGen‘ran (,)))
45 simp1 1127 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝜑)
46 simp3l 1215 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → {𝐵} ⊆ 𝑣)
47 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → {𝐵} ⊆ 𝑣)
487adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵 ∈ ℝ)
49 snssg 4547 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5147, 50mpbird 249 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵𝑣)
5245, 46, 51syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝐵𝑣)
5344, 52jca 507 . . . . . . . . . . . 12 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣))
54 tg2 21177 . . . . . . . . . . . 12 ((𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣) → ∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣))
55 ioof 12584 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
56 ffn 6291 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
57 ovelrn 7087 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏)))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
5958biimpi 208 . . . . . . . . . . . . . . 15 (𝑢 ∈ ran (,) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6059adantr 474 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
61 simpll 757 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵𝑢)
62 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢 = (𝑎(,)𝑏))
6361, 62eleqtrd 2860 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵 ∈ (𝑎(,)𝑏))
64 simplr 759 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢𝑣)
6562, 64eqsstr3d 3858 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ 𝑣)
6663, 65jca 507 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
6766ex 403 . . . . . . . . . . . . . . . . 17 ((𝐵𝑢𝑢𝑣) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6867adantl 475 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6968reximdv 3196 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7069reximdv 3196 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7160, 70mpd 15 . . . . . . . . . . . . 13 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7271rexlimiva 3209 . . . . . . . . . . . 12 (∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7353, 54, 723syl 18 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
74 simpl3r 1260 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → 𝑣𝑛)
7574adantr 474 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → 𝑣𝑛)
76 sstr 3828 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ 𝑣𝑣𝑛) → (𝑎(,)𝑏) ⊆ 𝑛)
7776expcom 404 . . . . . . . . . . . . . . 15 (𝑣𝑛 → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7875, 77syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7978anim2d 605 . . . . . . . . . . . . 13 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8079reximdva 3197 . . . . . . . . . . . 12 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8180reximdva 3197 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8273, 81mpd 15 . . . . . . . . . 10 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
83823exp 1109 . . . . . . . . 9 (𝜑 → (𝑣𝐽 → (({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))))
8483rexlimdv 3211 . . . . . . . 8 (𝜑 → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8584adantr 474 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8641, 85mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
8786adantlr 705 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
88 nfv 1957 . . . . . . . 8 𝑎𝜑
89 nfra1 3122 . . . . . . . 8 𝑎𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9088, 89nfan 1946 . . . . . . 7 𝑎(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
91 nfv 1957 . . . . . . 7 𝑎 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9290, 91nfan 1946 . . . . . 6 𝑎((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
93 nfv 1957 . . . . . 6 𝑎(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
94 nfv 1957 . . . . . . . . . . 11 𝑏𝜑
95 nfra2 3127 . . . . . . . . . . 11 𝑏𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9694, 95nfan 1946 . . . . . . . . . 10 𝑏(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
97 nfv 1957 . . . . . . . . . 10 𝑏 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9896, 97nfan 1946 . . . . . . . . 9 𝑏((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
99 nfv 1957 . . . . . . . . 9 𝑏 𝑎 ∈ ℝ*
10098, 99nfan 1946 . . . . . . . 8 𝑏(((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*)
101 nfv 1957 . . . . . . . 8 𝑏(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
102 inss1 4052 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑎(,)𝑏)
103 simp3r 1216 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎(,)𝑏) ⊆ 𝑛)
104102, 103syl5ss 3831 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ 𝑛)
105 inss2 4053 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
106105a1i 11 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵}))
107104, 106ssind 4056 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})))
108 simpllr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
1091083ad2ant1 1124 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
110 simp1r 1212 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑎 ∈ ℝ*)
111 simp2 1128 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑏 ∈ ℝ*)
112110, 111jca 507 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
113 simp3l 1215 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝐵 ∈ (𝑎(,)𝑏))
114 rsp2 3117 . . . . . . . . . . 11 (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
115109, 112, 113, 114syl3c 66 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
116 ssn0 4201 . . . . . . . . . 10 ((((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})) ∧ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
117107, 115, 116syl2anc 579 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
1181173exp 1109 . . . . . . . 8 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (𝑏 ∈ ℝ* → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
119100, 101, 118rexlimd 3207 . . . . . . 7 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
120119ex 403 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑎 ∈ ℝ* → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12192, 93, 120rexlimd 3207 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
12287, 121mpd 15 . . . 4 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
123122ralrimiva 3147 . . 3 ((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12437, 123impbida 791 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12510, 124bitrd 271 1 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wral 3089  wrex 3090  cdif 3788  cin 3790  wss 3791  c0 4140  𝒫 cpw 4378  {csn 4397   × cxp 5353  ran crn 5356   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  cr 10271  *cxr 10410  (,)cioo 12487  topGenctg 16484  Topctop 21105  TopOnctopon 21122  neicnei 21309  limPtclp 21346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-ioo 12491  df-topgen 16490  df-top 21106  df-topon 21123  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348
This theorem is referenced by:  lptioo2  40753  lptioo1  40754  lptre2pt  40762
  Copyright terms: Public domain W3C validator