Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Visualization version   GIF version

Theorem islptre 43850
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1 𝐽 = (topGen‘ran (,))
islptre.2 (𝜑𝐴 ⊆ ℝ)
islptre.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
islptre (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐽,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem islptre
Dummy variables 𝑛 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6 𝐽 = (topGen‘ran (,))
2 retopon 24127 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2834 . . . . 5 𝐽 ∈ (TopOn‘ℝ)
43topontopi 22264 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 islptre.2 . . 3 (𝜑𝐴 ⊆ ℝ)
7 islptre.3 . . 3 (𝜑𝐵 ∈ ℝ)
83toponunii 22265 . . . 4 ℝ = 𝐽
98islp2 22496 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
105, 6, 7, 9syl3anc 1371 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
11 simp1r 1198 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12 iooretop 24129 . . . . . . . . . . . 12 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
1312, 1eleqtrri 2837 . . . . . . . . . . 11 (𝑎(,)𝑏) ∈ 𝐽
1413a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ 𝐽)
15 snssi 4768 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ (𝑎(,)𝑏))
1615adantl 482 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ (𝑎(,)𝑏))
17 ssidd 3967 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))
18 sseq2 3970 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → ({𝐵} ⊆ 𝑣 ↔ {𝐵} ⊆ (𝑎(,)𝑏)))
19 sseq1 3969 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → (𝑣 ⊆ (𝑎(,)𝑏) ↔ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)))
2018, 19anbi12d 631 . . . . . . . . . . 11 (𝑣 = (𝑎(,)𝑏) → (({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)) ↔ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))))
2120rspcev 3581 . . . . . . . . . 10 (((𝑎(,)𝑏) ∈ 𝐽 ∧ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
2214, 16, 17, 21syl12anc 835 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
23 ioossre 13325 . . . . . . . . 9 (𝑎(,)𝑏) ⊆ ℝ
2422, 23jctil 520 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏))))
25 elioore 13294 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ)
2625snssd 4769 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ ℝ)
2726adantl 482 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ ℝ)
288isnei 22454 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
294, 27, 28sylancr 587 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
3024, 29mpbird 256 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
31303adant1 1130 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
32 ineq1 4165 . . . . . . . 8 (𝑛 = (𝑎(,)𝑏) → (𝑛 ∩ (𝐴 ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})))
3332neeq1d 3003 . . . . . . 7 (𝑛 = (𝑎(,)𝑏) → ((𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
3433rspccva 3580 . . . . . 6 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ∧ (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵})) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
3511, 31, 34syl2anc 584 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
36353exp 1119 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
3736ralrimivv 3195 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
387snssd 4769 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℝ)
398isnei 22454 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
404, 38, 39sylancr 587 . . . . . . . 8 (𝜑 → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
4140simplbda 500 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))
421eleq2i 2829 . . . . . . . . . . . . . . 15 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
4342biimpi 215 . . . . . . . . . . . . . 14 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
44433ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝑣 ∈ (topGen‘ran (,)))
45 simp1 1136 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝜑)
46 simp3l 1201 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → {𝐵} ⊆ 𝑣)
47 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → {𝐵} ⊆ 𝑣)
487adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵 ∈ ℝ)
49 snssg 4744 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5147, 50mpbird 256 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵𝑣)
5245, 46, 51syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝐵𝑣)
5344, 52jca 512 . . . . . . . . . . . 12 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣))
54 tg2 22315 . . . . . . . . . . . 12 ((𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣) → ∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣))
55 ioof 13364 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
56 ffn 6668 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
57 ovelrn 7530 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏)))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
5958biimpi 215 . . . . . . . . . . . . . . 15 (𝑢 ∈ ran (,) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6059adantr 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
61 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵𝑢)
62 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢 = (𝑎(,)𝑏))
6361, 62eleqtrd 2840 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵 ∈ (𝑎(,)𝑏))
64 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢𝑣)
6562, 64eqsstrrd 3983 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ 𝑣)
6663, 65jca 512 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
6766ex 413 . . . . . . . . . . . . . . . . 17 ((𝐵𝑢𝑢𝑣) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6867adantl 482 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6968reximdv 3167 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7069reximdv 3167 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7160, 70mpd 15 . . . . . . . . . . . . 13 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7271rexlimiva 3144 . . . . . . . . . . . 12 (∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7353, 54, 723syl 18 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
74 simpl3r 1229 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → 𝑣𝑛)
7574adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → 𝑣𝑛)
76 sstr 3952 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ 𝑣𝑣𝑛) → (𝑎(,)𝑏) ⊆ 𝑛)
7776expcom 414 . . . . . . . . . . . . . . 15 (𝑣𝑛 → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7875, 77syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7978anim2d 612 . . . . . . . . . . . . 13 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8079reximdva 3165 . . . . . . . . . . . 12 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8180reximdva 3165 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8273, 81mpd 15 . . . . . . . . . 10 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
83823exp 1119 . . . . . . . . 9 (𝜑 → (𝑣𝐽 → (({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))))
8483rexlimdv 3150 . . . . . . . 8 (𝜑 → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8584adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8641, 85mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
8786adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
88 nfv 1917 . . . . . . . 8 𝑎𝜑
89 nfra1 3267 . . . . . . . 8 𝑎𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9088, 89nfan 1902 . . . . . . 7 𝑎(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
91 nfv 1917 . . . . . . 7 𝑎 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9290, 91nfan 1902 . . . . . 6 𝑎((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
93 nfv 1917 . . . . . 6 𝑎(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
94 nfv 1917 . . . . . . . . . . 11 𝑏𝜑
95 nfra2w 3282 . . . . . . . . . . 11 𝑏𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9694, 95nfan 1902 . . . . . . . . . 10 𝑏(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
97 nfv 1917 . . . . . . . . . 10 𝑏 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9896, 97nfan 1902 . . . . . . . . 9 𝑏((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
99 nfv 1917 . . . . . . . . 9 𝑏 𝑎 ∈ ℝ*
10098, 99nfan 1902 . . . . . . . 8 𝑏(((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*)
101 nfv 1917 . . . . . . . 8 𝑏(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
102 inss1 4188 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑎(,)𝑏)
103 simp3r 1202 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎(,)𝑏) ⊆ 𝑛)
104102, 103sstrid 3955 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ 𝑛)
105 inss2 4189 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
106105a1i 11 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵}))
107104, 106ssind 4192 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})))
108 simpllr 774 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
1091083ad2ant1 1133 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
110 simp1r 1198 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑎 ∈ ℝ*)
111 simp2 1137 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑏 ∈ ℝ*)
112110, 111jca 512 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
113 simp3l 1201 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝐵 ∈ (𝑎(,)𝑏))
114 rsp2 3260 . . . . . . . . . . 11 (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
115109, 112, 113, 114syl3c 66 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
116 ssn0 4360 . . . . . . . . . 10 ((((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})) ∧ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
117107, 115, 116syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
1181173exp 1119 . . . . . . . 8 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (𝑏 ∈ ℝ* → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
119100, 101, 118rexlimd 3249 . . . . . . 7 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
120119ex 413 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑎 ∈ ℝ* → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12192, 93, 120rexlimd 3249 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
12287, 121mpd 15 . . . 4 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
123122ralrimiva 3143 . . 3 ((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12437, 123impbida 799 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12510, 124bitrd 278 1 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   × cxp 5631  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  *cxr 11188  (,)cioo 13264  topGenctg 17319  Topctop 22242  TopOnctopon 22259  neicnei 22448  limPtclp 22485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-ioo 13268  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487
This theorem is referenced by:  lptioo2  43862  lptioo1  43863  lptre2pt  43871
  Copyright terms: Public domain W3C validator