MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21 Structured version   Visualization version   GIF version

Theorem cnmpt21 23558
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt21.b (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
cnmpt21.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt21 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑥,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝐾   𝑥,𝑍,𝑦,𝑧   𝑥,𝐵,𝑦   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7390 . . . . . . . . . 10 (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)
2 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑥𝑋)
3 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑦𝑌)
4 cnmpt21.j . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 cnmpt21.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑌))
6 txtopon 23478 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
74, 5, 6syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 cnmpt21.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 cnmpt21.a . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
10 cnf2 23136 . . . . . . . . . . . . . . 15 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
117, 8, 9, 10syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
12 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpo 8047 . . . . . . . . . . . . . 14 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
1411, 13sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
15 rsp2 3254 . . . . . . . . . . . . 13 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1614, 15syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1716imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐴𝑍)
1812ovmpt4g 7536 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴𝑍) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
192, 3, 17, 18syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
201, 19eqtr3id 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩) = 𝐴)
2120fveq2d 6862 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = ((𝑧𝑍𝐵)‘𝐴))
22 eqid 2729 . . . . . . . . 9 (𝑧𝑍𝐵) = (𝑧𝑍𝐵)
23 cnmpt21.c . . . . . . . . 9 (𝑧 = 𝐴𝐵 = 𝐶)
2423eleq1d 2813 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐵 𝑀𝐶 𝑀))
25 cnmpt21.b . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
26 cntop2 23128 . . . . . . . . . . . . . . 15 ((𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀) → 𝑀 ∈ Top)
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Top)
28 toptopon2 22805 . . . . . . . . . . . . . 14 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
2927, 28sylib 218 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
30 cnf2 23136 . . . . . . . . . . . . 13 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → (𝑧𝑍𝐵):𝑍 𝑀)
318, 29, 25, 30syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍𝐵):𝑍 𝑀)
3222fmpt 7082 . . . . . . . . . . . 12 (∀𝑧𝑍 𝐵 𝑀 ↔ (𝑧𝑍𝐵):𝑍 𝑀)
3331, 32sylibr 234 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑍 𝐵 𝑀)
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ∀𝑧𝑍 𝐵 𝑀)
3524, 34, 17rspcdva 3589 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐶 𝑀)
3622, 23, 17, 35fvmptd3 6991 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘𝐴) = 𝐶)
3721, 36eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = 𝐶)
38 opelxpi 5675 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
39 fvco3 6960 . . . . . . . 8 (((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
4011, 38, 39syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
41 df-ov 7390 . . . . . . . 8 (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
42 eqid 2729 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
4342ovmpt4g 7536 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝐶 𝑀) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
442, 3, 35, 43syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
4541, 44eqtr3id 2778 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = 𝐶)
4637, 40, 453eqtr4d 2774 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
4746ralrimivva 3180 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
48 nfv 1914 . . . . . 6 𝑢𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
49 nfcv 2891 . . . . . . 7 𝑥𝑌
50 nfcv 2891 . . . . . . . . . 10 𝑥(𝑧𝑍𝐵)
51 nfmpo1 7469 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
5250, 51nfco 5829 . . . . . . . . 9 𝑥((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
53 nfcv 2891 . . . . . . . . 9 𝑥𝑢, 𝑣
5452, 53nffv 6868 . . . . . . . 8 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩)
55 nfmpo1 7469 . . . . . . . . 9 𝑥(𝑥𝑋, 𝑦𝑌𝐶)
5655, 53nffv 6868 . . . . . . . 8 𝑥((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5754, 56nfeq 2905 . . . . . . 7 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5849, 57nfralw 3285 . . . . . 6 𝑥𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
59 nfv 1914 . . . . . . . 8 𝑣(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
60 nfcv 2891 . . . . . . . . . . 11 𝑦(𝑧𝑍𝐵)
61 nfmpo2 7470 . . . . . . . . . . 11 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
6260, 61nfco 5829 . . . . . . . . . 10 𝑦((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
63 nfcv 2891 . . . . . . . . . 10 𝑦𝑥, 𝑣
6462, 63nffv 6868 . . . . . . . . 9 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩)
65 nfmpo2 7470 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐶)
6665, 63nffv 6868 . . . . . . . . 9 𝑦((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
6764, 66nfeq 2905 . . . . . . . 8 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
68 opeq2 4838 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
6968fveq2d 6862 . . . . . . . . 9 (𝑦 = 𝑣 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩))
7068fveq2d 6862 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
7169, 70eqeq12d 2745 . . . . . . . 8 (𝑦 = 𝑣 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)))
7259, 67, 71cbvralw 3280 . . . . . . 7 (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
73 opeq1 4837 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
7473fveq2d 6862 . . . . . . . . 9 (𝑥 = 𝑢 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
7573fveq2d 6862 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
7674, 75eqeq12d 2745 . . . . . . . 8 (𝑥 = 𝑢 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7776ralbidv 3156 . . . . . . 7 (𝑥 = 𝑢 → (∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7872, 77bitrid 283 . . . . . 6 (𝑥 = 𝑢 → (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7948, 58, 78cbvralw 3280 . . . . 5 (∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8047, 79sylib 218 . . . 4 (𝜑 → ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
81 fveq2 6858 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
82 fveq2 6858 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8381, 82eqeq12d 2745 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8483ralxp 5805 . . . 4 (∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8580, 84sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤))
86 fco 6712 . . . . . 6 (((𝑧𝑍𝐵):𝑍 𝑀 ∧ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8731, 11, 86syl2anc 584 . . . . 5 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8887ffnd 6689 . . . 4 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌))
8935ralrimivva 3180 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶 𝑀)
9042fmpo 8047 . . . . . 6 (∀𝑥𝑋𝑦𝑌 𝐶 𝑀 ↔ (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9189, 90sylib 218 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9291ffnd 6689 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌))
93 eqfnfv 7003 . . . 4 ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌) ∧ (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9488, 92, 93syl2anc 584 . . 3 (𝜑 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9585, 94mpbird 257 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶))
96 cnco 23153 . . 3 (((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
979, 25, 96syl2anc 584 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
9895, 97eqeltrrd 2829 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4595   cuni 4871  cmpt 5188   × cxp 5636  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Topctop 22780  TopOnctopon 22797   Cn ccn 23111   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-tx 23449
This theorem is referenced by:  cnmpt21f  23559  xkofvcn  23571  xkohmeo  23702  qustgplem  24008  prdstmdd  24011  divcnOLD  24757  divcn  24759  htpycom  24875  htpycc  24879  reparphti  24896  reparphtiOLD  24897  pcocn  24917  pcohtpylem  24919  pcopt  24922  pcopt2  24923  pcoass  24924  pcorevlem  24926  dipcn  30649
  Copyright terms: Public domain W3C validator