MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr1vtxlem Structured version   Visualization version   GIF version

Theorem rusgr1vtxlem 29567
Description: Lemma for rusgr1vtx 29568. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgr1vtxlem (((∀𝑣𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣𝑉 𝐴 = ∅) ∧ (𝑉𝑊 ∧ (♯‘𝑉) = 1)) → 𝐾 = 0)
Distinct variable groups:   𝑣,𝐾   𝑣,𝑉
Allowed substitution hints:   𝐴(𝑣)   𝑊(𝑣)

Proof of Theorem rusgr1vtxlem
StepHypRef Expression
1 r19.26 3098 . . 3 (∀𝑣𝑉 ((♯‘𝐴) = 𝐾𝐴 = ∅) ↔ (∀𝑣𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣𝑉 𝐴 = ∅))
2 fveqeq2 6885 . . . . . 6 (𝐴 = ∅ → ((♯‘𝐴) = 𝐾 ↔ (♯‘∅) = 𝐾))
32biimpac 478 . . . . 5 (((♯‘𝐴) = 𝐾𝐴 = ∅) → (♯‘∅) = 𝐾)
43ralimi 3073 . . . 4 (∀𝑣𝑉 ((♯‘𝐴) = 𝐾𝐴 = ∅) → ∀𝑣𝑉 (♯‘∅) = 𝐾)
5 hash1n0 14439 . . . . . 6 ((𝑉𝑊 ∧ (♯‘𝑉) = 1) → 𝑉 ≠ ∅)
6 rspn0 4331 . . . . . 6 (𝑉 ≠ ∅ → (∀𝑣𝑉 (♯‘∅) = 𝐾 → (♯‘∅) = 𝐾))
75, 6syl 17 . . . . 5 ((𝑉𝑊 ∧ (♯‘𝑉) = 1) → (∀𝑣𝑉 (♯‘∅) = 𝐾 → (♯‘∅) = 𝐾))
8 hash0 14385 . . . . . 6 (♯‘∅) = 0
9 eqeq1 2739 . . . . . 6 ((♯‘∅) = 𝐾 → ((♯‘∅) = 0 ↔ 𝐾 = 0))
108, 9mpbii 233 . . . . 5 ((♯‘∅) = 𝐾𝐾 = 0)
117, 10syl6com 37 . . . 4 (∀𝑣𝑉 (♯‘∅) = 𝐾 → ((𝑉𝑊 ∧ (♯‘𝑉) = 1) → 𝐾 = 0))
124, 11syl 17 . . 3 (∀𝑣𝑉 ((♯‘𝐴) = 𝐾𝐴 = ∅) → ((𝑉𝑊 ∧ (♯‘𝑉) = 1) → 𝐾 = 0))
131, 12sylbir 235 . 2 ((∀𝑣𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣𝑉 𝐴 = ∅) → ((𝑉𝑊 ∧ (♯‘𝑉) = 1) → 𝐾 = 0))
1413imp 406 1 (((∀𝑣𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣𝑉 𝐴 = ∅) ∧ (𝑉𝑊 ∧ (♯‘𝑉) = 1)) → 𝐾 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  c0 4308  cfv 6531  0cc0 11129  1c1 11130  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  rusgr1vtx  29568
  Copyright terms: Public domain W3C validator