MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2dif Structured version   Visualization version   GIF version

Theorem hashge2el2dif 14122
Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019.)
Assertion
Ref Expression
hashge2el2dif ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2dif
StepHypRef Expression
1 fveq2 6756 . . . . . . 7 (𝐷 = {𝑥} → (♯‘𝐷) = (♯‘{𝑥}))
2 hashsng 14012 . . . . . . 7 (𝑥𝐷 → (♯‘{𝑥}) = 1)
31, 2sylan9eqr 2801 . . . . . 6 ((𝑥𝐷𝐷 = {𝑥}) → (♯‘𝐷) = 1)
43ralimiaa 3085 . . . . 5 (∀𝑥𝐷 𝐷 = {𝑥} → ∀𝑥𝐷 (♯‘𝐷) = 1)
5 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
6 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
75, 6readdcli 10921 . . . . . . . . . . . . 13 (0 + 1) ∈ ℝ
87a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ∈ ℝ)
9 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 2 ∈ ℝ)
11 hashcl 13999 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
1211nn0red 12224 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℝ)
1312adantr 480 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) ∈ ℝ)
148, 10, 133jca 1126 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ))
15 0p1e1 12025 . . . . . . . . . . . . . . 15 (0 + 1) = 1
16 1lt2 12074 . . . . . . . . . . . . . . 15 1 < 2
1715, 16eqbrtri 5091 . . . . . . . . . . . . . 14 (0 + 1) < 2
1817jctl 523 . . . . . . . . . . . . 13 (2 ≤ (♯‘𝐷) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
1918adantl 481 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
2019adantl 481 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
21 ltleletr 10998 . . . . . . . . . . 11 (((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ) → (((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)) → (0 + 1) ≤ (♯‘𝐷)))
2214, 20, 21sylc 65 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ≤ (♯‘𝐷))
2311nn0zd 12353 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℤ)
24 0z 12260 . . . . . . . . . . . . 13 0 ∈ ℤ
2523, 24jctil 519 . . . . . . . . . . . 12 (𝐷 ∈ Fin → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
2625adantr 480 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
27 zltp1le 12300 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2826, 27syl 17 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2922, 28mpbird 256 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
30 0ltpnf 12787 . . . . . . . . . 10 0 < +∞
31 simpl 482 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷𝑉)
3231anim2i 616 . . . . . . . . . . . 12 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (¬ 𝐷 ∈ Fin ∧ 𝐷𝑉))
3332ancomd 461 . . . . . . . . . . 11 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin))
34 hashinf 13977 . . . . . . . . . . 11 ((𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin) → (♯‘𝐷) = +∞)
3533, 34syl 17 . . . . . . . . . 10 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) = +∞)
3630, 35breqtrrid 5108 . . . . . . . . 9 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
3729, 36pm2.61ian 808 . . . . . . . 8 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 0 < (♯‘𝐷))
38 hashgt0n0 14008 . . . . . . . 8 ((𝐷𝑉 ∧ 0 < (♯‘𝐷)) → 𝐷 ≠ ∅)
3937, 38syldan 590 . . . . . . 7 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷 ≠ ∅)
40 rspn0 4283 . . . . . . 7 (𝐷 ≠ ∅ → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
4139, 40syl 17 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
42 breq2 5074 . . . . . . . . 9 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) ↔ 2 ≤ 1))
436, 9ltnlei 11026 . . . . . . . . . . 11 (1 < 2 ↔ ¬ 2 ≤ 1)
44 pm2.21 123 . . . . . . . . . . 11 (¬ 2 ≤ 1 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4543, 44sylbi 216 . . . . . . . . . 10 (1 < 2 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4616, 45ax-mp 5 . . . . . . . . 9 (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
4742, 46syl6bi 252 . . . . . . . 8 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4847com12 32 . . . . . . 7 (2 ≤ (♯‘𝐷) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4948adantl 481 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5041, 49syldc 48 . . . . 5 (∀𝑥𝐷 (♯‘𝐷) = 1 → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
514, 50syl 17 . . . 4 (∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
52 ax-1 6 . . . 4 (¬ ∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5351, 52pm2.61i 182 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
54 eqsn 4759 . . . . . 6 (𝐷 ≠ ∅ → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
5539, 54syl 17 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
56 equcom 2022 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
5756a1i 11 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝑦 = 𝑥𝑥 = 𝑦))
5857ralbidv 3120 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑦𝐷 𝑦 = 𝑥 ↔ ∀𝑦𝐷 𝑥 = 𝑦))
5955, 58bitrd 278 . . . 4 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑥 = 𝑦))
6059ralbidv 3120 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 𝐷 = {𝑥} ↔ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦))
6153, 60mtbid 323 . 2 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
62 df-ne 2943 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
6362rexbii 3177 . . . . 5 (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦𝐷 ¬ 𝑥 = 𝑦)
64 rexnal 3165 . . . . 5 (∃𝑦𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6563, 64bitri 274 . . . 4 (∃𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6665rexbii 3177 . . 3 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦)
67 rexnal 3165 . . 3 (∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6866, 67bitri 274 . 2 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6961, 68sylibr 233 1 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937   < clt 10940  cle 10941  2c2 11958  cz 12249  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  hashge2el2difb  14124  fundmge2nop0  14134  tglowdim1  26765  cyc3conja  31326
  Copyright terms: Public domain W3C validator