MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2dif Structured version   Visualization version   GIF version

Theorem hashge2el2dif 13837
Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019.)
Assertion
Ref Expression
hashge2el2dif ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2dif
StepHypRef Expression
1 fveq2 6669 . . . . . . 7 (𝐷 = {𝑥} → (♯‘𝐷) = (♯‘{𝑥}))
2 hashsng 13729 . . . . . . 7 (𝑥𝐷 → (♯‘{𝑥}) = 1)
31, 2sylan9eqr 2878 . . . . . 6 ((𝑥𝐷𝐷 = {𝑥}) → (♯‘𝐷) = 1)
43ralimiaa 3159 . . . . 5 (∀𝑥𝐷 𝐷 = {𝑥} → ∀𝑥𝐷 (♯‘𝐷) = 1)
5 0re 10642 . . . . . . . . . . . . . 14 0 ∈ ℝ
6 1re 10640 . . . . . . . . . . . . . 14 1 ∈ ℝ
75, 6readdcli 10655 . . . . . . . . . . . . 13 (0 + 1) ∈ ℝ
87a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ∈ ℝ)
9 2re 11710 . . . . . . . . . . . . 13 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 2 ∈ ℝ)
11 hashcl 13716 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
1211nn0red 11955 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℝ)
1312adantr 483 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) ∈ ℝ)
148, 10, 133jca 1124 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ))
15 0p1e1 11758 . . . . . . . . . . . . . . 15 (0 + 1) = 1
16 1lt2 11807 . . . . . . . . . . . . . . 15 1 < 2
1715, 16eqbrtri 5086 . . . . . . . . . . . . . 14 (0 + 1) < 2
1817jctl 526 . . . . . . . . . . . . 13 (2 ≤ (♯‘𝐷) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
1918adantl 484 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
2019adantl 484 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
21 ltleletr 10732 . . . . . . . . . . 11 (((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ) → (((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)) → (0 + 1) ≤ (♯‘𝐷)))
2214, 20, 21sylc 65 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ≤ (♯‘𝐷))
2311nn0zd 12084 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℤ)
24 0z 11991 . . . . . . . . . . . . 13 0 ∈ ℤ
2523, 24jctil 522 . . . . . . . . . . . 12 (𝐷 ∈ Fin → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
2625adantr 483 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
27 zltp1le 12031 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2826, 27syl 17 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2922, 28mpbird 259 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
30 0ltpnf 12516 . . . . . . . . . 10 0 < +∞
31 simpl 485 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷𝑉)
3231anim2i 618 . . . . . . . . . . . 12 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (¬ 𝐷 ∈ Fin ∧ 𝐷𝑉))
3332ancomd 464 . . . . . . . . . . 11 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin))
34 hashinf 13694 . . . . . . . . . . 11 ((𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin) → (♯‘𝐷) = +∞)
3533, 34syl 17 . . . . . . . . . 10 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) = +∞)
3630, 35breqtrrid 5103 . . . . . . . . 9 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
3729, 36pm2.61ian 810 . . . . . . . 8 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 0 < (♯‘𝐷))
38 hashgt0n0 13725 . . . . . . . 8 ((𝐷𝑉 ∧ 0 < (♯‘𝐷)) → 𝐷 ≠ ∅)
3937, 38syldan 593 . . . . . . 7 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷 ≠ ∅)
40 rspn0 4312 . . . . . . 7 (𝐷 ≠ ∅ → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
4139, 40syl 17 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
42 breq2 5069 . . . . . . . . 9 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) ↔ 2 ≤ 1))
436, 9ltnlei 10760 . . . . . . . . . . 11 (1 < 2 ↔ ¬ 2 ≤ 1)
44 pm2.21 123 . . . . . . . . . . 11 (¬ 2 ≤ 1 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4543, 44sylbi 219 . . . . . . . . . 10 (1 < 2 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4616, 45ax-mp 5 . . . . . . . . 9 (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
4742, 46syl6bi 255 . . . . . . . 8 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4847com12 32 . . . . . . 7 (2 ≤ (♯‘𝐷) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4948adantl 484 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5041, 49syldc 48 . . . . 5 (∀𝑥𝐷 (♯‘𝐷) = 1 → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
514, 50syl 17 . . . 4 (∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
52 ax-1 6 . . . 4 (¬ ∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5351, 52pm2.61i 184 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
54 eqsn 4761 . . . . . 6 (𝐷 ≠ ∅ → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
5539, 54syl 17 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
56 equcom 2021 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
5756a1i 11 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝑦 = 𝑥𝑥 = 𝑦))
5857ralbidv 3197 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑦𝐷 𝑦 = 𝑥 ↔ ∀𝑦𝐷 𝑥 = 𝑦))
5955, 58bitrd 281 . . . 4 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑥 = 𝑦))
6059ralbidv 3197 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 𝐷 = {𝑥} ↔ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦))
6153, 60mtbid 326 . 2 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
62 df-ne 3017 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
6362rexbii 3247 . . . . 5 (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦𝐷 ¬ 𝑥 = 𝑦)
64 rexnal 3238 . . . . 5 (∃𝑦𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6563, 64bitri 277 . . . 4 (∃𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6665rexbii 3247 . . 3 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦)
67 rexnal 3238 . . 3 (∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6866, 67bitri 277 . 2 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6961, 68sylibr 236 1 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  c0 4290  {csn 4566   class class class wbr 5065  cfv 6354  (class class class)co 7155  Fincfn 8508  cr 10535  0cc0 10536  1c1 10537   + caddc 10539  +∞cpnf 10671   < clt 10674  cle 10675  2c2 11691  cz 11980  chash 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-hash 13690
This theorem is referenced by:  hashge2el2difb  13839  fundmge2nop0  13849  tglowdim1  26285  cyc3conja  30799
  Copyright terms: Public domain W3C validator