MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2dif Structured version   Visualization version   GIF version

Theorem hashge2el2dif 14385
Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019.)
Assertion
Ref Expression
hashge2el2dif ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2dif
StepHypRef Expression
1 fveq2 6843 . . . . . . 7 (𝐷 = {𝑥} → (♯‘𝐷) = (♯‘{𝑥}))
2 hashsng 14275 . . . . . . 7 (𝑥𝐷 → (♯‘{𝑥}) = 1)
31, 2sylan9eqr 2795 . . . . . 6 ((𝑥𝐷𝐷 = {𝑥}) → (♯‘𝐷) = 1)
43ralimiaa 3082 . . . . 5 (∀𝑥𝐷 𝐷 = {𝑥} → ∀𝑥𝐷 (♯‘𝐷) = 1)
5 0re 11162 . . . . . . . . . . . . . 14 0 ∈ ℝ
6 1re 11160 . . . . . . . . . . . . . 14 1 ∈ ℝ
75, 6readdcli 11175 . . . . . . . . . . . . 13 (0 + 1) ∈ ℝ
87a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ∈ ℝ)
9 2re 12232 . . . . . . . . . . . . 13 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 2 ∈ ℝ)
11 hashcl 14262 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
1211nn0red 12479 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℝ)
1312adantr 482 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) ∈ ℝ)
148, 10, 133jca 1129 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ))
15 0p1e1 12280 . . . . . . . . . . . . . . 15 (0 + 1) = 1
16 1lt2 12329 . . . . . . . . . . . . . . 15 1 < 2
1715, 16eqbrtri 5127 . . . . . . . . . . . . . 14 (0 + 1) < 2
1817jctl 525 . . . . . . . . . . . . 13 (2 ≤ (♯‘𝐷) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
1918adantl 483 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
2019adantl 483 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → ((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)))
21 ltleletr 11253 . . . . . . . . . . 11 (((0 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝐷) ∈ ℝ) → (((0 + 1) < 2 ∧ 2 ≤ (♯‘𝐷)) → (0 + 1) ≤ (♯‘𝐷)))
2214, 20, 21sylc 65 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 + 1) ≤ (♯‘𝐷))
2311nn0zd 12530 . . . . . . . . . . . . 13 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℤ)
24 0z 12515 . . . . . . . . . . . . 13 0 ∈ ℤ
2523, 24jctil 521 . . . . . . . . . . . 12 (𝐷 ∈ Fin → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
2625adantr 482 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ))
27 zltp1le 12558 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2826, 27syl 17 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (0 < (♯‘𝐷) ↔ (0 + 1) ≤ (♯‘𝐷)))
2922, 28mpbird 257 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
30 0ltpnf 13048 . . . . . . . . . 10 0 < +∞
31 simpl 484 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷𝑉)
3231anim2i 618 . . . . . . . . . . . 12 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (¬ 𝐷 ∈ Fin ∧ 𝐷𝑉))
3332ancomd 463 . . . . . . . . . . 11 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin))
34 hashinf 14241 . . . . . . . . . . 11 ((𝐷𝑉 ∧ ¬ 𝐷 ∈ Fin) → (♯‘𝐷) = +∞)
3533, 34syl 17 . . . . . . . . . 10 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → (♯‘𝐷) = +∞)
3630, 35breqtrrid 5144 . . . . . . . . 9 ((¬ 𝐷 ∈ Fin ∧ (𝐷𝑉 ∧ 2 ≤ (♯‘𝐷))) → 0 < (♯‘𝐷))
3729, 36pm2.61ian 811 . . . . . . . 8 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 0 < (♯‘𝐷))
38 hashgt0n0 14271 . . . . . . . 8 ((𝐷𝑉 ∧ 0 < (♯‘𝐷)) → 𝐷 ≠ ∅)
3937, 38syldan 592 . . . . . . 7 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → 𝐷 ≠ ∅)
40 rspn0 4313 . . . . . . 7 (𝐷 ≠ ∅ → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
4139, 40syl 17 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 (♯‘𝐷) = 1 → (♯‘𝐷) = 1))
42 breq2 5110 . . . . . . . . 9 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) ↔ 2 ≤ 1))
436, 9ltnlei 11281 . . . . . . . . . . 11 (1 < 2 ↔ ¬ 2 ≤ 1)
44 pm2.21 123 . . . . . . . . . . 11 (¬ 2 ≤ 1 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4543, 44sylbi 216 . . . . . . . . . 10 (1 < 2 → (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4616, 45ax-mp 5 . . . . . . . . 9 (2 ≤ 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
4742, 46syl6bi 253 . . . . . . . 8 ((♯‘𝐷) = 1 → (2 ≤ (♯‘𝐷) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4847com12 32 . . . . . . 7 (2 ≤ (♯‘𝐷) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
4948adantl 483 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ((♯‘𝐷) = 1 → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5041, 49syldc 48 . . . . 5 (∀𝑥𝐷 (♯‘𝐷) = 1 → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
514, 50syl 17 . . . 4 (∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
52 ax-1 6 . . . 4 (¬ ∀𝑥𝐷 𝐷 = {𝑥} → ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥}))
5351, 52pm2.61i 182 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷 𝐷 = {𝑥})
54 eqsn 4790 . . . . . 6 (𝐷 ≠ ∅ → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
5539, 54syl 17 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑦 = 𝑥))
56 equcom 2022 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
5756a1i 11 . . . . . 6 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝑦 = 𝑥𝑥 = 𝑦))
5857ralbidv 3171 . . . . 5 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑦𝐷 𝑦 = 𝑥 ↔ ∀𝑦𝐷 𝑥 = 𝑦))
5955, 58bitrd 279 . . . 4 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦𝐷 𝑥 = 𝑦))
6059ralbidv 3171 . . 3 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → (∀𝑥𝐷 𝐷 = {𝑥} ↔ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦))
6153, 60mtbid 324 . 2 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
62 df-ne 2941 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
6362rexbii 3094 . . . . 5 (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦𝐷 ¬ 𝑥 = 𝑦)
64 rexnal 3100 . . . . 5 (∃𝑦𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6563, 64bitri 275 . . . 4 (∃𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑦𝐷 𝑥 = 𝑦)
6665rexbii 3094 . . 3 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦)
67 rexnal 3100 . . 3 (∃𝑥𝐷 ¬ ∀𝑦𝐷 𝑥 = 𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6866, 67bitri 275 . 2 (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ¬ ∀𝑥𝐷𝑦𝐷 𝑥 = 𝑦)
6961, 68sylibr 233 1 ((𝐷𝑉 ∧ 2 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  c0 4283  {csn 4587   class class class wbr 5106  cfv 6497  (class class class)co 7358  Fincfn 8886  cr 11055  0cc0 11056  1c1 11057   + caddc 11059  +∞cpnf 11191   < clt 11194  cle 11195  2c2 12213  cz 12504  chash 14236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-fz 13431  df-hash 14237
This theorem is referenced by:  hashge2el2difb  14387  fundmge2nop0  14397  tglowdim1  27484  cyc3conja  32055
  Copyright terms: Public domain W3C validator