Step | Hyp | Ref
| Expression |
1 | | scmatrhmval.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
2 | | scmatrhmval.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | scmatrhmval.o |
. . . 4
⊢ 1 =
(1r‘𝐴) |
4 | | scmatrhmval.t |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐴) |
5 | | scmatrhmval.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
6 | | scmatrhmval.c |
. . . 4
⊢ 𝐶 = (𝑁 ScMat 𝑅) |
7 | 1, 2, 3, 4, 5, 6 | scmatf 21678 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
8 | 7 | 3adant2 1130 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
9 | | simpr 485 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
10 | | simpl 483 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → 𝑦 ∈ 𝐾) |
11 | 1, 2, 3, 4, 5 | scmatrhmval 21676 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
12 | 9, 10, 11 | syl2an 596 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
13 | | simpr 485 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → 𝑧 ∈ 𝐾) |
14 | 1, 2, 3, 4, 5 | scmatrhmval 21676 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
15 | 9, 13, 14 | syl2an 596 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
16 | 12, 15 | eqeq12d 2754 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 ∗ 1 ) = (𝑧 ∗ 1 ))) |
17 | 16 | 3adantl2 1166 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 ∗ 1 ) = (𝑧 ∗ 1 ))) |
18 | 2 | matring 21592 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐴) =
(Base‘𝐴) |
20 | 19, 3 | ringidcl 19807 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring → 1 ∈
(Base‘𝐴)) |
21 | 18, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈
(Base‘𝐴)) |
22 | 21, 10 | anim12ci 614 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑦 ∈ 𝐾 ∧ 1 ∈ (Base‘𝐴))) |
23 | 1, 2, 19, 4 | matvscl 21580 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 1 ∈ (Base‘𝐴))) → (𝑦 ∗ 1 ) ∈ (Base‘𝐴)) |
24 | 22, 23 | syldan 591 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑦 ∗ 1 ) ∈ (Base‘𝐴)) |
25 | 21, 13 | anim12ci 614 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑧 ∈ 𝐾 ∧ 1 ∈ (Base‘𝐴))) |
26 | 1, 2, 19, 4 | matvscl 21580 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑧 ∈ 𝐾 ∧ 1 ∈ (Base‘𝐴))) → (𝑧 ∗ 1 ) ∈ (Base‘𝐴)) |
27 | 25, 26 | syldan 591 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑧 ∗ 1 ) ∈ (Base‘𝐴)) |
28 | 24, 27 | jca 512 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1 ) ∈ (Base‘𝐴) ∧ (𝑧 ∗ 1 ) ∈ (Base‘𝐴))) |
29 | 28 | 3adantl2 1166 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1 ) ∈ (Base‘𝐴) ∧ (𝑧 ∗ 1 ) ∈ (Base‘𝐴))) |
30 | 2, 19 | eqmat 21573 |
. . . . . 6
⊢ (((𝑦 ∗ 1 ) ∈ (Base‘𝐴) ∧ (𝑧 ∗ 1 ) ∈ (Base‘𝐴)) → ((𝑦 ∗ 1 ) = (𝑧 ∗ 1 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗))) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1 ) = (𝑧 ∗ 1 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗))) |
32 | | difsnid 4743 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁) |
33 | 32 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
34 | 33 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
35 | 34 | raleqdv 3348 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ ∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗))) |
36 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑦 ∗ 1 )𝑖)) |
37 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑖(𝑧 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑖)) |
38 | 36, 37 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ (𝑖(𝑦 ∗ 1 )𝑖) = (𝑖(𝑧 ∗ 1 )𝑖))) |
39 | 38 | ralunsn 4825 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑁 → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ (𝑖(𝑦 ∗ 1 )𝑖) = (𝑖(𝑧 ∗ 1 )𝑖)))) |
40 | 39 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ (𝑖(𝑦 ∗ 1 )𝑖) = (𝑖(𝑧 ∗ 1 )𝑖)))) |
41 | 10 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐾)) |
42 | | df-3an 1088 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐾)) |
43 | 41, 42 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾)) |
44 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ 𝑁 → 𝑖 ∈ 𝑁) |
45 | 44, 44 | jca 512 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝑁 → (𝑖 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁)) |
46 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) = (0g‘𝑅) |
47 | 2, 1, 46, 3, 4 | scmatscmide 21656 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁)) → (𝑖(𝑦 ∗ 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g‘𝑅))) |
48 | 43, 45, 47 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (𝑖(𝑦 ∗ 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g‘𝑅))) |
49 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ 𝑖 = 𝑖 |
50 | 49 | iftruei 4466 |
. . . . . . . . . . . 12
⊢ if(𝑖 = 𝑖, 𝑦, (0g‘𝑅)) = 𝑦 |
51 | 48, 50 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (𝑖(𝑦 ∗ 1 )𝑖) = 𝑦) |
52 | 13 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧 ∈ 𝐾)) |
53 | | df-3an 1088 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧 ∈ 𝐾)) |
54 | 52, 53 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾)) |
55 | 2, 1, 46, 3, 4 | scmatscmide 21656 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁)) → (𝑖(𝑧 ∗ 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g‘𝑅))) |
56 | 54, 45, 55 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (𝑖(𝑧 ∗ 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g‘𝑅))) |
57 | 49 | iftruei 4466 |
. . . . . . . . . . . 12
⊢ if(𝑖 = 𝑖, 𝑧, (0g‘𝑅)) = 𝑧 |
58 | 56, 57 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (𝑖(𝑧 ∗ 1 )𝑖) = 𝑧) |
59 | 51, 58 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → ((𝑖(𝑦 ∗ 1 )𝑖) = (𝑖(𝑧 ∗ 1 )𝑖) ↔ 𝑦 = 𝑧)) |
60 | 59 | anbi2d 629 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → ((∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ (𝑖(𝑦 ∗ 1 )𝑖) = (𝑖(𝑧 ∗ 1 )𝑖)) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧))) |
61 | 35, 40, 60 | 3bitrd 305 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧))) |
62 | 61 | ralbidva 3111 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ ∀𝑖 ∈ 𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧))) |
63 | 62 | 3adantl2 1166 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ↔ ∀𝑖 ∈ 𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧))) |
64 | | r19.26 3095 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧) ↔ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ ∀𝑖 ∈ 𝑁 𝑦 = 𝑧)) |
65 | | rspn0 4286 |
. . . . . . . . . . 11
⊢ (𝑁 ≠ ∅ →
(∀𝑖 ∈ 𝑁 𝑦 = 𝑧 → 𝑦 = 𝑧)) |
66 | 65 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) →
(∀𝑖 ∈ 𝑁 𝑦 = 𝑧 → 𝑦 = 𝑧)) |
67 | 66 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (∀𝑖 ∈ 𝑁 𝑦 = 𝑧 → 𝑦 = 𝑧)) |
68 | 67 | com12 32 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝑁 𝑦 = 𝑧 → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑦 = 𝑧)) |
69 | 64, 68 | simplbiim 505 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧) → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑦 = 𝑧)) |
70 | 69 | com12 32 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (∀𝑖 ∈ 𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
71 | 63, 70 | sylbid 239 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑦 ∗ 1 )𝑗) = (𝑖(𝑧 ∗ 1 )𝑗) → 𝑦 = 𝑧)) |
72 | 31, 71 | sylbid 239 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1 ) = (𝑧 ∗ 1 ) → 𝑦 = 𝑧)) |
73 | 17, 72 | sylbid 239 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
74 | 73 | ralrimivva 3123 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) →
∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐾 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
75 | | dff13 7128 |
. 2
⊢ (𝐹:𝐾–1-1→𝐶 ↔ (𝐹:𝐾⟶𝐶 ∧ ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐾 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
76 | 8, 74, 75 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1→𝐶) |