MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatf1 Structured version   Visualization version   GIF version

Theorem scmatf1 22425
Description: There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatf1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem scmatf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatrhmval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatrhmval.o . . . 4 1 = (1r𝐴)
4 scmatrhmval.t . . . 4 = ( ·𝑠𝐴)
5 scmatrhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
6 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatf 22423 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
873adant2 1131 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
9 simpr 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
10 simpl 482 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑦𝐾)
111, 2, 3, 4, 5scmatrhmval 22421 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
129, 10, 11syl2an 596 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
13 simpr 484 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑧𝐾)
141, 2, 3, 4, 5scmatrhmval 22421 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
159, 13, 14syl2an 596 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
1612, 15eqeq12d 2746 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
17163adantl2 1168 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
182matring 22337 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
19 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
2019, 3ringidcl 20181 . . . . . . . . . . 11 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
2118, 20syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
2221, 10anim12ci 614 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦𝐾1 ∈ (Base‘𝐴)))
231, 2, 19, 4matvscl 22325 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾1 ∈ (Base‘𝐴))) → (𝑦 1 ) ∈ (Base‘𝐴))
2422, 23syldan 591 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦 1 ) ∈ (Base‘𝐴))
2521, 13anim12ci 614 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧𝐾1 ∈ (Base‘𝐴)))
261, 2, 19, 4matvscl 22325 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑧𝐾1 ∈ (Base‘𝐴))) → (𝑧 1 ) ∈ (Base‘𝐴))
2725, 26syldan 591 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧 1 ) ∈ (Base‘𝐴))
2824, 27jca 511 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
29283adantl2 1168 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
302, 19eqmat 22318 . . . . . 6 (((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
3129, 30syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
32 difsnid 4777 . . . . . . . . . . . 12 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
3332eqcomd 2736 . . . . . . . . . . 11 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3433adantl 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3534raleqdv 3301 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
36 oveq2 7398 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑦 1 )𝑗) = (𝑖(𝑦 1 )𝑖))
37 oveq2 7398 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑧 1 )𝑗) = (𝑖(𝑧 1 )𝑖))
3836, 37eqeq12d 2746 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)))
3938ralunsn 4861 . . . . . . . . . 10 (𝑖𝑁 → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4039adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4110anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
42 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
4341, 42sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾))
44 id 22 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖𝑁)
4544, 44jca 511 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑖𝑁𝑖𝑁))
46 eqid 2730 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
472, 1, 46, 3, 4scmatscmide 22401 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
4843, 45, 47syl2an 596 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
49 eqid 2730 . . . . . . . . . . . . 13 𝑖 = 𝑖
5049iftruei 4498 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑦, (0g𝑅)) = 𝑦
5148, 50eqtrdi 2781 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = 𝑦)
5213anim2i 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
53 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
5452, 53sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾))
552, 1, 46, 3, 4scmatscmide 22401 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5654, 45, 55syl2an 596 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5749iftruei 4498 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑧, (0g𝑅)) = 𝑧
5856, 57eqtrdi 2781 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = 𝑧)
5951, 58eqeq12d 2746 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖) ↔ 𝑦 = 𝑧))
6059anbi2d 630 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6135, 40, 603bitrd 305 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6261ralbidva 3155 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
63623adantl2 1168 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
64 r19.26 3092 . . . . . . . 8 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) ↔ (∀𝑖𝑁𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ ∀𝑖𝑁 𝑦 = 𝑧))
65 rspn0 4322 . . . . . . . . . . 11 (𝑁 ≠ ∅ → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
66653ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6766adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6867com12 32 . . . . . . . 8 (∀𝑖𝑁 𝑦 = 𝑧 → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
6964, 68simplbiim 504 . . . . . . 7 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
7069com12 32 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧))
7163, 70sylbid 240 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) → 𝑦 = 𝑧))
7231, 71sylbid 240 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) → 𝑦 = 𝑧))
7317, 72sylbid 240 . . 3 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
7473ralrimivva 3181 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
75 dff13 7232 . 2 (𝐹:𝐾1-1𝐶 ↔ (𝐹:𝐾𝐶 ∧ ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
768, 74, 75sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  cun 3915  c0 4299  ifcif 4491  {csn 4592  cmpt 5191  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186   ·𝑠 cvsca 17231  0gc0g 17409  1rcur 20097  Ringcrg 20149   Mat cmat 22301   ScMat cscmat 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302  df-scmat 22385
This theorem is referenced by:  scmatf1o  22426
  Copyright terms: Public domain W3C validator