MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatf1 Structured version   Visualization version   GIF version

Theorem scmatf1 21588
Description: There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatf1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem scmatf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatrhmval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatrhmval.o . . . 4 1 = (1r𝐴)
4 scmatrhmval.t . . . 4 = ( ·𝑠𝐴)
5 scmatrhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
6 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatf 21586 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
873adant2 1129 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
9 simpr 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
10 simpl 482 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑦𝐾)
111, 2, 3, 4, 5scmatrhmval 21584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
129, 10, 11syl2an 595 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
13 simpr 484 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑧𝐾)
141, 2, 3, 4, 5scmatrhmval 21584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
159, 13, 14syl2an 595 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
1612, 15eqeq12d 2754 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
17163adantl2 1165 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
182matring 21500 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
19 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
2019, 3ringidcl 19722 . . . . . . . . . . 11 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
2118, 20syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
2221, 10anim12ci 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦𝐾1 ∈ (Base‘𝐴)))
231, 2, 19, 4matvscl 21488 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾1 ∈ (Base‘𝐴))) → (𝑦 1 ) ∈ (Base‘𝐴))
2422, 23syldan 590 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦 1 ) ∈ (Base‘𝐴))
2521, 13anim12ci 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧𝐾1 ∈ (Base‘𝐴)))
261, 2, 19, 4matvscl 21488 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑧𝐾1 ∈ (Base‘𝐴))) → (𝑧 1 ) ∈ (Base‘𝐴))
2725, 26syldan 590 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧 1 ) ∈ (Base‘𝐴))
2824, 27jca 511 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
29283adantl2 1165 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
302, 19eqmat 21481 . . . . . 6 (((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
3129, 30syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
32 difsnid 4740 . . . . . . . . . . . 12 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
3332eqcomd 2744 . . . . . . . . . . 11 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3433adantl 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3534raleqdv 3339 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
36 oveq2 7263 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑦 1 )𝑗) = (𝑖(𝑦 1 )𝑖))
37 oveq2 7263 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑧 1 )𝑗) = (𝑖(𝑧 1 )𝑖))
3836, 37eqeq12d 2754 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)))
3938ralunsn 4822 . . . . . . . . . 10 (𝑖𝑁 → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4039adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4110anim2i 616 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
42 df-3an 1087 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
4341, 42sylibr 233 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾))
44 id 22 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖𝑁)
4544, 44jca 511 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑖𝑁𝑖𝑁))
46 eqid 2738 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
472, 1, 46, 3, 4scmatscmide 21564 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
4843, 45, 47syl2an 595 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
49 eqid 2738 . . . . . . . . . . . . 13 𝑖 = 𝑖
5049iftruei 4463 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑦, (0g𝑅)) = 𝑦
5148, 50eqtrdi 2795 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = 𝑦)
5213anim2i 616 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
53 df-3an 1087 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
5452, 53sylibr 233 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾))
552, 1, 46, 3, 4scmatscmide 21564 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5654, 45, 55syl2an 595 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5749iftruei 4463 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑧, (0g𝑅)) = 𝑧
5856, 57eqtrdi 2795 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = 𝑧)
5951, 58eqeq12d 2754 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖) ↔ 𝑦 = 𝑧))
6059anbi2d 628 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6135, 40, 603bitrd 304 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6261ralbidva 3119 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
63623adantl2 1165 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
64 r19.26 3094 . . . . . . . 8 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) ↔ (∀𝑖𝑁𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ ∀𝑖𝑁 𝑦 = 𝑧))
65 rspn0 4283 . . . . . . . . . . 11 (𝑁 ≠ ∅ → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
66653ad2ant2 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6766adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6867com12 32 . . . . . . . 8 (∀𝑖𝑁 𝑦 = 𝑧 → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
6964, 68simplbiim 504 . . . . . . 7 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
7069com12 32 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧))
7163, 70sylbid 239 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) → 𝑦 = 𝑧))
7231, 71sylbid 239 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) → 𝑦 = 𝑧))
7317, 72sylbid 239 . . 3 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
7473ralrimivva 3114 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
75 dff13 7109 . 2 (𝐹:𝐾1-1𝐶 ↔ (𝐹:𝐾𝐶 ∧ ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
768, 74, 75sylanbrc 582 1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cun 3881  c0 4253  ifcif 4456  {csn 4558  cmpt 5153  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  Ringcrg 19698   Mat cmat 21464   ScMat cscmat 21546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mamu 21443  df-mat 21465  df-scmat 21548
This theorem is referenced by:  scmatf1o  21589
  Copyright terms: Public domain W3C validator