Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsiin Structured version   Visualization version   GIF version

Theorem zarclsiin 33861
Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclsiin.1 𝐾 = (RSpan‘𝑅)
Assertion
Ref Expression
zarclsiin ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Distinct variable groups:   𝑅,𝑖,𝑗,𝑙   𝑉,𝑙   𝑖,𝐾,𝑗,𝑙   𝑇,𝑖,𝑗,𝑙
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarclsiin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3973 . . . . 5 (𝑗 = 𝑝 → ((𝐾 𝑇) ⊆ 𝑗 ↔ (𝐾 𝑇) ⊆ 𝑝))
2 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇 ≠ ∅)
3 zarclsx.1 . . . . . . . . . . . 12 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
43a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5 sseq1 3972 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
65rabbidv 3413 . . . . . . . . . . . 12 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
76adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8 simp2 1137 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅))
98sselda 3946 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
10 fvex 6871 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
1110rabex 5294 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
134, 7, 9, 12fvmptd 6975 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
14 ssrab2 4043 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅)
1514a1i 11 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅))
1613, 15eqsstrd 3981 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) ⊆ (PrmIdeal‘𝑅))
1716sseld 3945 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑝 ∈ (𝑉𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅)))
1817ralimdva 3145 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)))
19 eliin 4960 . . . . . . . . 9 (𝑝 ∈ V → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
2019elv 3452 . . . . . . . 8 (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2120biimpi 216 . . . . . . 7 (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2218, 21impel 505 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅))
23 rspn0 4319 . . . . . . 7 (𝑇 ≠ ∅ → (∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅)))
2423imp 406 . . . . . 6 ((𝑇 ≠ ∅ ∧ ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅))
252, 22, 24syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅))
26 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring)
2726adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑅 ∈ Ring)
28 prmidlidl 33415 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅))
2927, 25, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (LIdeal‘𝑅))
30 nfv 1914 . . . . . . . . 9 𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)
31 nfcv 2891 . . . . . . . . . 10 𝑙𝑝
32 nfii1 4993 . . . . . . . . . 10 𝑙 𝑙𝑇 (𝑉𝑙)
3331, 32nfel 2906 . . . . . . . . 9 𝑙 𝑝 𝑙𝑇 (𝑉𝑙)
3430, 33nfan 1899 . . . . . . . 8 𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙))
3521a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
3635imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
3736adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
38 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑇)
39 rspa 3226 . . . . . . . . . . . . 13 ((∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4113adantlr 715 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
4240, 41eleqtrd 2830 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
43 sseq2 3973 . . . . . . . . . . . 12 (𝑗 = 𝑝 → (𝑙𝑗𝑙𝑝))
4443elrab 3659 . . . . . . . . . . 11 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4542, 44sylib 218 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4645simprd 495 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑝)
4746ex 412 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑙𝑇𝑙𝑝))
4834, 47ralrimi 3235 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑙𝑝)
49 unissb 4903 . . . . . . 7 ( 𝑇𝑝 ↔ ∀𝑙𝑇 𝑙𝑝)
5048, 49sylibr 234 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇𝑝)
51 zarclsiin.1 . . . . . . 7 𝐾 = (RSpan‘𝑅)
52 eqid 2729 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5351, 52rspssp 21149 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ 𝑇𝑝) → (𝐾 𝑇) ⊆ 𝑝)
5427, 29, 50, 53syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝐾 𝑇) ⊆ 𝑝)
551, 25, 54elrabd 3661 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
563a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
57 sseq1 3972 . . . . . . . . 9 (𝑖 = (𝐾 𝑇) → (𝑖𝑗 ↔ (𝐾 𝑇) ⊆ 𝑗))
5857rabbidv 3413 . . . . . . . 8 (𝑖 = (𝐾 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
5958adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
608sselda 3946 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ∈ (LIdeal‘𝑅))
61 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6261, 52lidlss 21122 . . . . . . . . . . 11 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
6360, 62syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ⊆ (Base‘𝑅))
6463ralrimiva 3125 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
65 unissb 4903 . . . . . . . . 9 ( 𝑇 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
6664, 65sylibr 234 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (Base‘𝑅))
6751, 61, 52rspcl 21145 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6826, 66, 67syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6910rabex 5294 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V)
7156, 59, 68, 70fvmptd 6975 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
7271eleq2d 2814 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7372adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7455, 73mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (𝑉‘(𝐾 𝑇)))
7572biimpa 476 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
761elrab 3659 . . . . . . . . . 10 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7775, 76sylib 218 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7877simpld 494 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅))
7978adantr 480 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅))
80 elssuni 4901 . . . . . . . . . 10 (𝑙𝑇𝑙 𝑇)
8180adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 𝑇)
82 simpll 766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅))
8351, 61rspssid 21146 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → 𝑇 ⊆ (𝐾 𝑇))
8426, 66, 83syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (𝐾 𝑇))
8582, 84syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑇 ⊆ (𝐾 𝑇))
8681, 85sstrd 3957 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ⊆ (𝐾 𝑇))
8777simprd 495 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝐾 𝑇) ⊆ 𝑝)
8887adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝐾 𝑇) ⊆ 𝑝)
8986, 88sstrd 3957 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙𝑝)
9043, 79, 89elrabd 3661 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
918adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅))
9291sselda 3946 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
933a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
946adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
95 simpr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
9611a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
9793, 94, 95, 96fvmptd 6975 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9882, 92, 97syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9990, 98eleqtrrd 2831 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
10099ralrimiva 3125 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
10120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
102100, 101mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 𝑙𝑇 (𝑉𝑙))
10374, 102impbida 800 . 2 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾 𝑇))))
104103eqrdv 2727 1 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  wss 3914  c0 4296   cuni 4871   ciin 4956  cmpt 5188  cfv 6511  Basecbs 17179  Ringcrg 20142  LIdealclidl 21116  RSpancrsp 21117  PrmIdealcprmidl 33406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-mgp 20050  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-prmidl 33407
This theorem is referenced by:  zarclsint  33862  zarcmplem  33871
  Copyright terms: Public domain W3C validator