Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsiin Structured version   Visualization version   GIF version

Theorem zarclsiin 33868
Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclsiin.1 𝐾 = (RSpan‘𝑅)
Assertion
Ref Expression
zarclsiin ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Distinct variable groups:   𝑅,𝑖,𝑗,𝑙   𝑉,𝑙   𝑖,𝐾,𝑗,𝑙   𝑇,𝑖,𝑗,𝑙
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarclsiin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3976 . . . . 5 (𝑗 = 𝑝 → ((𝐾 𝑇) ⊆ 𝑗 ↔ (𝐾 𝑇) ⊆ 𝑝))
2 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇 ≠ ∅)
3 zarclsx.1 . . . . . . . . . . . 12 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
43a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5 sseq1 3975 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
65rabbidv 3416 . . . . . . . . . . . 12 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
76adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8 simp2 1137 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅))
98sselda 3949 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
10 fvex 6874 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
1110rabex 5297 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
134, 7, 9, 12fvmptd 6978 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
14 ssrab2 4046 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅)
1514a1i 11 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅))
1613, 15eqsstrd 3984 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) ⊆ (PrmIdeal‘𝑅))
1716sseld 3948 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑝 ∈ (𝑉𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅)))
1817ralimdva 3146 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)))
19 eliin 4963 . . . . . . . . 9 (𝑝 ∈ V → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
2019elv 3455 . . . . . . . 8 (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2120biimpi 216 . . . . . . 7 (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2218, 21impel 505 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅))
23 rspn0 4322 . . . . . . 7 (𝑇 ≠ ∅ → (∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅)))
2423imp 406 . . . . . 6 ((𝑇 ≠ ∅ ∧ ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅))
252, 22, 24syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅))
26 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring)
2726adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑅 ∈ Ring)
28 prmidlidl 33422 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅))
2927, 25, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (LIdeal‘𝑅))
30 nfv 1914 . . . . . . . . 9 𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)
31 nfcv 2892 . . . . . . . . . 10 𝑙𝑝
32 nfii1 4996 . . . . . . . . . 10 𝑙 𝑙𝑇 (𝑉𝑙)
3331, 32nfel 2907 . . . . . . . . 9 𝑙 𝑝 𝑙𝑇 (𝑉𝑙)
3430, 33nfan 1899 . . . . . . . 8 𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙))
3521a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
3635imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
3736adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
38 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑇)
39 rspa 3227 . . . . . . . . . . . . 13 ((∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4113adantlr 715 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
4240, 41eleqtrd 2831 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
43 sseq2 3976 . . . . . . . . . . . 12 (𝑗 = 𝑝 → (𝑙𝑗𝑙𝑝))
4443elrab 3662 . . . . . . . . . . 11 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4542, 44sylib 218 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4645simprd 495 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑝)
4746ex 412 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑙𝑇𝑙𝑝))
4834, 47ralrimi 3236 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑙𝑝)
49 unissb 4906 . . . . . . 7 ( 𝑇𝑝 ↔ ∀𝑙𝑇 𝑙𝑝)
5048, 49sylibr 234 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇𝑝)
51 zarclsiin.1 . . . . . . 7 𝐾 = (RSpan‘𝑅)
52 eqid 2730 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5351, 52rspssp 21156 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ 𝑇𝑝) → (𝐾 𝑇) ⊆ 𝑝)
5427, 29, 50, 53syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝐾 𝑇) ⊆ 𝑝)
551, 25, 54elrabd 3664 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
563a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
57 sseq1 3975 . . . . . . . . 9 (𝑖 = (𝐾 𝑇) → (𝑖𝑗 ↔ (𝐾 𝑇) ⊆ 𝑗))
5857rabbidv 3416 . . . . . . . 8 (𝑖 = (𝐾 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
5958adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
608sselda 3949 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ∈ (LIdeal‘𝑅))
61 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6261, 52lidlss 21129 . . . . . . . . . . 11 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
6360, 62syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ⊆ (Base‘𝑅))
6463ralrimiva 3126 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
65 unissb 4906 . . . . . . . . 9 ( 𝑇 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
6664, 65sylibr 234 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (Base‘𝑅))
6751, 61, 52rspcl 21152 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6826, 66, 67syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6910rabex 5297 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V)
7156, 59, 68, 70fvmptd 6978 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
7271eleq2d 2815 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7372adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7455, 73mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (𝑉‘(𝐾 𝑇)))
7572biimpa 476 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
761elrab 3662 . . . . . . . . . 10 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7775, 76sylib 218 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7877simpld 494 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅))
7978adantr 480 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅))
80 elssuni 4904 . . . . . . . . . 10 (𝑙𝑇𝑙 𝑇)
8180adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 𝑇)
82 simpll 766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅))
8351, 61rspssid 21153 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → 𝑇 ⊆ (𝐾 𝑇))
8426, 66, 83syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (𝐾 𝑇))
8582, 84syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑇 ⊆ (𝐾 𝑇))
8681, 85sstrd 3960 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ⊆ (𝐾 𝑇))
8777simprd 495 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝐾 𝑇) ⊆ 𝑝)
8887adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝐾 𝑇) ⊆ 𝑝)
8986, 88sstrd 3960 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙𝑝)
9043, 79, 89elrabd 3664 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
918adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅))
9291sselda 3949 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
933a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
946adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
95 simpr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
9611a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
9793, 94, 95, 96fvmptd 6978 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9882, 92, 97syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9990, 98eleqtrrd 2832 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
10099ralrimiva 3126 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
10120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
102100, 101mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 𝑙𝑇 (𝑉𝑙))
10374, 102impbida 800 . 2 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾 𝑇))))
104103eqrdv 2728 1 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299   cuni 4874   ciin 4959  cmpt 5191  cfv 6514  Basecbs 17186  Ringcrg 20149  LIdealclidl 21123  RSpancrsp 21124  PrmIdealcprmidl 33413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-mgp 20057  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-prmidl 33414
This theorem is referenced by:  zarclsint  33869  zarcmplem  33878
  Copyright terms: Public domain W3C validator