Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsiin Structured version   Visualization version   GIF version

Theorem zarclsiin 31821
Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclsiin.1 𝐾 = (RSpan‘𝑅)
Assertion
Ref Expression
zarclsiin ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Distinct variable groups:   𝑅,𝑖,𝑗,𝑙   𝑉,𝑙   𝑖,𝐾,𝑗,𝑙   𝑇,𝑖,𝑗,𝑙
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarclsiin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3947 . . . . 5 (𝑗 = 𝑝 → ((𝐾 𝑇) ⊆ 𝑗 ↔ (𝐾 𝑇) ⊆ 𝑝))
2 simpl3 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇 ≠ ∅)
3 zarclsx.1 . . . . . . . . . . . 12 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
43a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5 sseq1 3946 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
65rabbidv 3414 . . . . . . . . . . . 12 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
76adantl 482 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8 simp2 1136 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅))
98sselda 3921 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
10 fvex 6787 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
1110rabex 5256 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
134, 7, 9, 12fvmptd 6882 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
14 ssrab2 4013 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅)
1514a1i 11 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅))
1613, 15eqsstrd 3959 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) ⊆ (PrmIdeal‘𝑅))
1716sseld 3920 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑝 ∈ (𝑉𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅)))
1817ralimdva 3108 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)))
19 eliin 4929 . . . . . . . . 9 (𝑝 ∈ V → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
2019elv 3438 . . . . . . . 8 (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2120biimpi 215 . . . . . . 7 (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2218, 21impel 506 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅))
23 rspn0 4286 . . . . . . 7 (𝑇 ≠ ∅ → (∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅)))
2423imp 407 . . . . . 6 ((𝑇 ≠ ∅ ∧ ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅))
252, 22, 24syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅))
26 simp1 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring)
2726adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑅 ∈ Ring)
28 prmidlidl 31619 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅))
2927, 25, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (LIdeal‘𝑅))
30 nfv 1917 . . . . . . . . 9 𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)
31 nfcv 2907 . . . . . . . . . 10 𝑙𝑝
32 nfii1 4959 . . . . . . . . . 10 𝑙 𝑙𝑇 (𝑉𝑙)
3331, 32nfel 2921 . . . . . . . . 9 𝑙 𝑝 𝑙𝑇 (𝑉𝑙)
3430, 33nfan 1902 . . . . . . . 8 𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙))
3521a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
3635imp 407 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
3736adantr 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
38 simpr 485 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑇)
39 rspa 3132 . . . . . . . . . . . . 13 ((∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4113adantlr 712 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
4240, 41eleqtrd 2841 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
43 sseq2 3947 . . . . . . . . . . . 12 (𝑗 = 𝑝 → (𝑙𝑗𝑙𝑝))
4443elrab 3624 . . . . . . . . . . 11 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4542, 44sylib 217 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4645simprd 496 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑝)
4746ex 413 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑙𝑇𝑙𝑝))
4834, 47ralrimi 3141 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑙𝑝)
49 unissb 4873 . . . . . . 7 ( 𝑇𝑝 ↔ ∀𝑙𝑇 𝑙𝑝)
5048, 49sylibr 233 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇𝑝)
51 zarclsiin.1 . . . . . . 7 𝐾 = (RSpan‘𝑅)
52 eqid 2738 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5351, 52rspssp 20497 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ 𝑇𝑝) → (𝐾 𝑇) ⊆ 𝑝)
5427, 29, 50, 53syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝐾 𝑇) ⊆ 𝑝)
551, 25, 54elrabd 3626 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
563a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
57 sseq1 3946 . . . . . . . . 9 (𝑖 = (𝐾 𝑇) → (𝑖𝑗 ↔ (𝐾 𝑇) ⊆ 𝑗))
5857rabbidv 3414 . . . . . . . 8 (𝑖 = (𝐾 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
5958adantl 482 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
608sselda 3921 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ∈ (LIdeal‘𝑅))
61 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6261, 52lidlss 20481 . . . . . . . . . . 11 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
6360, 62syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ⊆ (Base‘𝑅))
6463ralrimiva 3103 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
65 unissb 4873 . . . . . . . . 9 ( 𝑇 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
6664, 65sylibr 233 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (Base‘𝑅))
6751, 61, 52rspcl 20493 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6826, 66, 67syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6910rabex 5256 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V)
7156, 59, 68, 70fvmptd 6882 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
7271eleq2d 2824 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7372adantr 481 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7455, 73mpbird 256 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (𝑉‘(𝐾 𝑇)))
7572biimpa 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
761elrab 3624 . . . . . . . . . 10 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7775, 76sylib 217 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7877simpld 495 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅))
7978adantr 481 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅))
80 elssuni 4871 . . . . . . . . . 10 (𝑙𝑇𝑙 𝑇)
8180adantl 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 𝑇)
82 simpll 764 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅))
8351, 61rspssid 20494 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → 𝑇 ⊆ (𝐾 𝑇))
8426, 66, 83syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (𝐾 𝑇))
8582, 84syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑇 ⊆ (𝐾 𝑇))
8681, 85sstrd 3931 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ⊆ (𝐾 𝑇))
8777simprd 496 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝐾 𝑇) ⊆ 𝑝)
8887adantr 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝐾 𝑇) ⊆ 𝑝)
8986, 88sstrd 3931 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙𝑝)
9043, 79, 89elrabd 3626 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
918adantr 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅))
9291sselda 3921 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
933a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
946adantl 482 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
95 simpr 485 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
9611a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
9793, 94, 95, 96fvmptd 6882 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9882, 92, 97syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9990, 98eleqtrrd 2842 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
10099ralrimiva 3103 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
10120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
102100, 101mpbird 256 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 𝑙𝑇 (𝑉𝑙))
10374, 102impbida 798 . 2 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾 𝑇))))
104103eqrdv 2736 1 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  wss 3887  c0 4256   cuni 4839   ciin 4925  cmpt 5157  cfv 6433  Basecbs 16912  Ringcrg 19783  LIdealclidl 20432  RSpancrsp 20433  PrmIdealcprmidl 31610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-prmidl 31611
This theorem is referenced by:  zarclsint  31822  zarcmplem  31831
  Copyright terms: Public domain W3C validator