| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sseq2 4010 | . . . . 5
⊢ (𝑗 = 𝑝 → ((𝐾‘∪ 𝑇) ⊆ 𝑗 ↔ (𝐾‘∪ 𝑇) ⊆ 𝑝)) | 
| 2 |  | simpl3 1194 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑇 ≠ ∅) | 
| 3 |  | zarclsx.1 | . . . . . . . . . . . 12
⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) | 
| 4 | 3 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) | 
| 5 |  | sseq1 4009 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑙 → (𝑖 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑗)) | 
| 6 | 5 | rabbidv 3444 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 7 | 6 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 8 |  | simp2 1138 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅)) | 
| 9 | 8 | sselda 3983 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ (LIdeal‘𝑅)) | 
| 10 |  | fvex 6919 | . . . . . . . . . . . . 13
⊢
(PrmIdeal‘𝑅)
∈ V | 
| 11 | 10 | rabex 5339 | . . . . . . . . . . . 12
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V | 
| 12 | 11 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V) | 
| 13 | 4, 7, 9, 12 | fvmptd 7023 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 14 |  | ssrab2 4080 | . . . . . . . . . . 11
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ⊆ (PrmIdeal‘𝑅) | 
| 15 | 14 | a1i 11 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ⊆ (PrmIdeal‘𝑅)) | 
| 16 | 13, 15 | eqsstrd 4018 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) ⊆ (PrmIdeal‘𝑅)) | 
| 17 | 16 | sseld 3982 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑝 ∈ (𝑉‘𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅))) | 
| 18 | 17 | ralimdva 3167 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅))) | 
| 19 |  | eliin 4996 | . . . . . . . . 9
⊢ (𝑝 ∈ V → (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) | 
| 20 | 19 | elv 3485 | . . . . . . . 8
⊢ (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) | 
| 21 | 20 | biimpi 216 | . . . . . . 7
⊢ (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) | 
| 22 | 18, 21 | impel 505 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) | 
| 23 |  | rspn0 4356 | . . . . . . 7
⊢ (𝑇 ≠ ∅ →
(∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅))) | 
| 24 | 23 | imp 406 | . . . . . 6
⊢ ((𝑇 ≠ ∅ ∧
∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅)) | 
| 25 | 2, 22, 24 | syl2anc 584 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅)) | 
| 26 |  | simp1 1137 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring) | 
| 27 | 26 | adantr 480 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑅 ∈ Ring) | 
| 28 |  | prmidlidl 33472 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅)) | 
| 29 | 27, 25, 28 | syl2anc 584 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (LIdeal‘𝑅)) | 
| 30 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) | 
| 31 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑙𝑝 | 
| 32 |  | nfii1 5029 | . . . . . . . . . 10
⊢
Ⅎ𝑙∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) | 
| 33 | 31, 32 | nfel 2920 | . . . . . . . . 9
⊢
Ⅎ𝑙 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) | 
| 34 | 30, 33 | nfan 1899 | . . . . . . . 8
⊢
Ⅎ𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) | 
| 35 | 21 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) | 
| 36 | 35 | imp 406 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) | 
| 38 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ 𝑇) | 
| 39 |  | rspa 3248 | . . . . . . . . . . . . 13
⊢
((∀𝑙 ∈
𝑇 𝑝 ∈ (𝑉‘𝑙) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) | 
| 40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) | 
| 41 | 13 | adantlr 715 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 42 | 40, 41 | eleqtrd 2843 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 43 |  | sseq2 4010 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑝 → (𝑙 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑝)) | 
| 44 | 43 | elrab 3692 | . . . . . . . . . . 11
⊢ (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙 ⊆ 𝑝)) | 
| 45 | 42, 44 | sylib 218 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙 ⊆ 𝑝)) | 
| 46 | 45 | simprd 495 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ 𝑝) | 
| 47 | 46 | ex 412 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝑙 ∈ 𝑇 → 𝑙 ⊆ 𝑝)) | 
| 48 | 34, 47 | ralrimi 3257 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝) | 
| 49 |  | unissb 4939 | . . . . . . 7
⊢ (∪ 𝑇
⊆ 𝑝 ↔
∀𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝) | 
| 50 | 48, 49 | sylibr 234 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∪ 𝑇 ⊆ 𝑝) | 
| 51 |  | zarclsiin.1 | . . . . . . 7
⊢ 𝐾 = (RSpan‘𝑅) | 
| 52 |  | eqid 2737 | . . . . . . 7
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) | 
| 53 | 51, 52 | rspssp 21249 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ ∪ 𝑇
⊆ 𝑝) → (𝐾‘∪ 𝑇)
⊆ 𝑝) | 
| 54 | 27, 29, 50, 53 | syl3anc 1373 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝐾‘∪ 𝑇) ⊆ 𝑝) | 
| 55 | 1, 25, 54 | elrabd 3694 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) | 
| 56 | 3 | a1i 11 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) | 
| 57 |  | sseq1 4009 | . . . . . . . . 9
⊢ (𝑖 = (𝐾‘∪ 𝑇) → (𝑖 ⊆ 𝑗 ↔ (𝐾‘∪ 𝑇) ⊆ 𝑗)) | 
| 58 | 57 | rabbidv 3444 | . . . . . . . 8
⊢ (𝑖 = (𝐾‘∪ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) | 
| 59 | 58 | adantl 481 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾‘∪ 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) | 
| 60 | 8 | sselda 3983 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 ∈ 𝑇) → 𝑖 ∈ (LIdeal‘𝑅)) | 
| 61 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 62 | 61, 52 | lidlss 21222 | . . . . . . . . . . 11
⊢ (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅)) | 
| 63 | 60, 62 | syl 17 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 ∈ 𝑇) → 𝑖 ⊆ (Base‘𝑅)) | 
| 64 | 63 | ralrimiva 3146 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖 ∈ 𝑇 𝑖 ⊆ (Base‘𝑅)) | 
| 65 |  | unissb 4939 | . . . . . . . . 9
⊢ (∪ 𝑇
⊆ (Base‘𝑅)
↔ ∀𝑖 ∈
𝑇 𝑖 ⊆ (Base‘𝑅)) | 
| 66 | 64, 65 | sylibr 234 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∪ 𝑇
⊆ (Base‘𝑅)) | 
| 67 | 51, 61, 52 | rspcl 21245 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ ∪ 𝑇
⊆ (Base‘𝑅))
→ (𝐾‘∪ 𝑇)
∈ (LIdeal‘𝑅)) | 
| 68 | 26, 66, 67 | syl2anc 584 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾‘∪ 𝑇) ∈ (LIdeal‘𝑅)) | 
| 69 | 10 | rabex 5339 | . . . . . . . 8
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ∈ V | 
| 70 | 69 | a1i 11 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ∈ V) | 
| 71 | 56, 59, 68, 70 | fvmptd 7023 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾‘∪ 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) | 
| 72 | 71 | eleq2d 2827 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗})) | 
| 73 | 72 | adantr 480 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗})) | 
| 74 | 55, 73 | mpbird 257 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) | 
| 75 | 72 | biimpa 476 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) | 
| 76 | 1 | elrab 3692 | . . . . . . . . . 10
⊢ (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾‘∪ 𝑇) ⊆ 𝑝)) | 
| 77 | 75, 76 | sylib 218 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾‘∪ 𝑇) ⊆ 𝑝)) | 
| 78 | 77 | simpld 494 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅)) | 
| 79 | 78 | adantr 480 | . . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅)) | 
| 80 |  | elssuni 4937 | . . . . . . . . . 10
⊢ (𝑙 ∈ 𝑇 → 𝑙 ⊆ ∪ 𝑇) | 
| 81 | 80 | adantl 481 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ ∪ 𝑇) | 
| 82 |  | simpll 767 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)) | 
| 83 | 51, 61 | rspssid 21246 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ∪ 𝑇
⊆ (Base‘𝑅))
→ ∪ 𝑇 ⊆ (𝐾‘∪ 𝑇)) | 
| 84 | 26, 66, 83 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∪ 𝑇
⊆ (𝐾‘∪ 𝑇)) | 
| 85 | 82, 84 | syl 17 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → ∪ 𝑇 ⊆ (𝐾‘∪ 𝑇)) | 
| 86 | 81, 85 | sstrd 3994 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ (𝐾‘∪ 𝑇)) | 
| 87 | 77 | simprd 495 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝐾‘∪ 𝑇) ⊆ 𝑝) | 
| 88 | 87 | adantr 480 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝐾‘∪ 𝑇) ⊆ 𝑝) | 
| 89 | 86, 88 | sstrd 3994 | . . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ 𝑝) | 
| 90 | 43, 79, 89 | elrabd 3694 | . . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 91 | 8 | adantr 480 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅)) | 
| 92 | 91 | sselda 3983 | . . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ (LIdeal‘𝑅)) | 
| 93 | 3 | a1i 11 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) | 
| 94 | 6 | adantl 481 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 95 |  | simpr 484 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅)) | 
| 96 | 11 | a1i 11 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V) | 
| 97 | 93, 94, 95, 96 | fvmptd 7023 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 98 | 82, 92, 97 | syl2anc 584 | . . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) | 
| 99 | 90, 98 | eleqtrrd 2844 | . . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) | 
| 100 | 99 | ralrimiva 3146 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) | 
| 101 | 20 | a1i 11 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) | 
| 102 | 100, 101 | mpbird 257 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) | 
| 103 | 74, 102 | impbida 801 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)))) | 
| 104 | 103 | eqrdv 2735 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) = (𝑉‘(𝐾‘∪ 𝑇))) |