Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsiin Structured version   Visualization version   GIF version

Theorem zarclsiin 33884
Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclsiin.1 𝐾 = (RSpan‘𝑅)
Assertion
Ref Expression
zarclsiin ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Distinct variable groups:   𝑅,𝑖,𝑗,𝑙   𝑉,𝑙   𝑖,𝐾,𝑗,𝑙   𝑇,𝑖,𝑗,𝑙
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarclsiin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3956 . . . . 5 (𝑗 = 𝑝 → ((𝐾 𝑇) ⊆ 𝑗 ↔ (𝐾 𝑇) ⊆ 𝑝))
2 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇 ≠ ∅)
3 zarclsx.1 . . . . . . . . . . . 12 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
43a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5 sseq1 3955 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
65rabbidv 3402 . . . . . . . . . . . 12 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
76adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8 simp2 1137 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅))
98sselda 3929 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
10 fvex 6835 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
1110rabex 5275 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
134, 7, 9, 12fvmptd 6936 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
14 ssrab2 4027 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅)
1514a1i 11 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅))
1613, 15eqsstrd 3964 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) ⊆ (PrmIdeal‘𝑅))
1716sseld 3928 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑝 ∈ (𝑉𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅)))
1817ralimdva 3144 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)))
19 eliin 4944 . . . . . . . . 9 (𝑝 ∈ V → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
2019elv 3441 . . . . . . . 8 (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2120biimpi 216 . . . . . . 7 (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2218, 21impel 505 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅))
23 rspn0 4303 . . . . . . 7 (𝑇 ≠ ∅ → (∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅)))
2423imp 406 . . . . . 6 ((𝑇 ≠ ∅ ∧ ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅))
252, 22, 24syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅))
26 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring)
2726adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑅 ∈ Ring)
28 prmidlidl 33409 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅))
2927, 25, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (LIdeal‘𝑅))
30 nfv 1915 . . . . . . . . 9 𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)
31 nfcv 2894 . . . . . . . . . 10 𝑙𝑝
32 nfii1 4977 . . . . . . . . . 10 𝑙 𝑙𝑇 (𝑉𝑙)
3331, 32nfel 2909 . . . . . . . . 9 𝑙 𝑝 𝑙𝑇 (𝑉𝑙)
3430, 33nfan 1900 . . . . . . . 8 𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙))
3521a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
3635imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
3736adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
38 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑇)
39 rspa 3221 . . . . . . . . . . . . 13 ((∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4113adantlr 715 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
4240, 41eleqtrd 2833 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
43 sseq2 3956 . . . . . . . . . . . 12 (𝑗 = 𝑝 → (𝑙𝑗𝑙𝑝))
4443elrab 3642 . . . . . . . . . . 11 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4542, 44sylib 218 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4645simprd 495 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑝)
4746ex 412 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑙𝑇𝑙𝑝))
4834, 47ralrimi 3230 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑙𝑝)
49 unissb 4889 . . . . . . 7 ( 𝑇𝑝 ↔ ∀𝑙𝑇 𝑙𝑝)
5048, 49sylibr 234 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇𝑝)
51 zarclsiin.1 . . . . . . 7 𝐾 = (RSpan‘𝑅)
52 eqid 2731 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5351, 52rspssp 21176 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ 𝑇𝑝) → (𝐾 𝑇) ⊆ 𝑝)
5427, 29, 50, 53syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝐾 𝑇) ⊆ 𝑝)
551, 25, 54elrabd 3644 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
563a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
57 sseq1 3955 . . . . . . . . 9 (𝑖 = (𝐾 𝑇) → (𝑖𝑗 ↔ (𝐾 𝑇) ⊆ 𝑗))
5857rabbidv 3402 . . . . . . . 8 (𝑖 = (𝐾 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
5958adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
608sselda 3929 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ∈ (LIdeal‘𝑅))
61 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6261, 52lidlss 21149 . . . . . . . . . . 11 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
6360, 62syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ⊆ (Base‘𝑅))
6463ralrimiva 3124 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
65 unissb 4889 . . . . . . . . 9 ( 𝑇 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
6664, 65sylibr 234 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (Base‘𝑅))
6751, 61, 52rspcl 21172 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6826, 66, 67syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6910rabex 5275 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V)
7156, 59, 68, 70fvmptd 6936 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
7271eleq2d 2817 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7372adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7455, 73mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (𝑉‘(𝐾 𝑇)))
7572biimpa 476 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
761elrab 3642 . . . . . . . . . 10 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7775, 76sylib 218 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7877simpld 494 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅))
7978adantr 480 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅))
80 elssuni 4887 . . . . . . . . . 10 (𝑙𝑇𝑙 𝑇)
8180adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 𝑇)
82 simpll 766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅))
8351, 61rspssid 21173 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → 𝑇 ⊆ (𝐾 𝑇))
8426, 66, 83syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (𝐾 𝑇))
8582, 84syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑇 ⊆ (𝐾 𝑇))
8681, 85sstrd 3940 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ⊆ (𝐾 𝑇))
8777simprd 495 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝐾 𝑇) ⊆ 𝑝)
8887adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝐾 𝑇) ⊆ 𝑝)
8986, 88sstrd 3940 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙𝑝)
9043, 79, 89elrabd 3644 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
918adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅))
9291sselda 3929 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
933a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
946adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
95 simpr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
9611a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
9793, 94, 95, 96fvmptd 6936 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9882, 92, 97syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9990, 98eleqtrrd 2834 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
10099ralrimiva 3124 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
10120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
102100, 101mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 𝑙𝑇 (𝑉𝑙))
10374, 102impbida 800 . 2 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾 𝑇))))
104103eqrdv 2729 1 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  c0 4280   cuni 4856   ciin 4940  cmpt 5170  cfv 6481  Basecbs 17120  Ringcrg 20151  LIdealclidl 21143  RSpancrsp 21144  PrmIdealcprmidl 33400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-mgp 20059  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-prmidl 33401
This theorem is referenced by:  zarclsint  33885  zarcmplem  33894
  Copyright terms: Public domain W3C validator