Step | Hyp | Ref
| Expression |
1 | | sseq2 3943 |
. . . . 5
⊢ (𝑗 = 𝑝 → ((𝐾‘∪ 𝑇) ⊆ 𝑗 ↔ (𝐾‘∪ 𝑇) ⊆ 𝑝)) |
2 | | simpl3 1191 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑇 ≠ ∅) |
3 | | zarclsx.1 |
. . . . . . . . . . . 12
⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
5 | | sseq1 3942 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑙 → (𝑖 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑗)) |
6 | 5 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
7 | 6 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
8 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅)) |
9 | 8 | sselda 3917 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ (LIdeal‘𝑅)) |
10 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(PrmIdeal‘𝑅)
∈ V |
11 | 10 | rabex 5251 |
. . . . . . . . . . . 12
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V |
12 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V) |
13 | 4, 7, 9, 12 | fvmptd 6864 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
14 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ⊆ (PrmIdeal‘𝑅) |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ⊆ (PrmIdeal‘𝑅)) |
16 | 13, 15 | eqsstrd 3955 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) ⊆ (PrmIdeal‘𝑅)) |
17 | 16 | sseld 3916 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ 𝑇) → (𝑝 ∈ (𝑉‘𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅))) |
18 | 17 | ralimdva 3102 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅))) |
19 | | eliin 4926 |
. . . . . . . . 9
⊢ (𝑝 ∈ V → (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) |
20 | 19 | elv 3428 |
. . . . . . . 8
⊢ (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) |
21 | 20 | biimpi 215 |
. . . . . . 7
⊢ (𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) |
22 | 18, 21 | impel 505 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) |
23 | | rspn0 4283 |
. . . . . . 7
⊢ (𝑇 ≠ ∅ →
(∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅))) |
24 | 23 | imp 406 |
. . . . . 6
⊢ ((𝑇 ≠ ∅ ∧
∀𝑙 ∈ 𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅)) |
25 | 2, 22, 24 | syl2anc 583 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅)) |
26 | | simp1 1134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring) |
27 | 26 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑅 ∈ Ring) |
28 | | prmidlidl 31521 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅)) |
29 | 27, 25, 28 | syl2anc 583 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (LIdeal‘𝑅)) |
30 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) |
31 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑙𝑝 |
32 | | nfii1 4956 |
. . . . . . . . . 10
⊢
Ⅎ𝑙∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) |
33 | 31, 32 | nfel 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑙 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) |
34 | 30, 33 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) |
35 | 21 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) |
36 | 35 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) |
38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ 𝑇) |
39 | | rspa 3130 |
. . . . . . . . . . . . 13
⊢
((∀𝑙 ∈
𝑇 𝑝 ∈ (𝑉‘𝑙) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) |
40 | 37, 38, 39 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) |
41 | 13 | adantlr 711 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
42 | 40, 41 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
43 | | sseq2 3943 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑝 → (𝑙 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑝)) |
44 | 43 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙 ⊆ 𝑝)) |
45 | 42, 44 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙 ⊆ 𝑝)) |
46 | 45 | simprd 495 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ 𝑝) |
47 | 46 | ex 412 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝑙 ∈ 𝑇 → 𝑙 ⊆ 𝑝)) |
48 | 34, 47 | ralrimi 3139 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∀𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝) |
49 | | unissb 4870 |
. . . . . . 7
⊢ (∪ 𝑇
⊆ 𝑝 ↔
∀𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝) |
50 | 48, 49 | sylibr 233 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → ∪ 𝑇 ⊆ 𝑝) |
51 | | zarclsiin.1 |
. . . . . . 7
⊢ 𝐾 = (RSpan‘𝑅) |
52 | | eqid 2738 |
. . . . . . 7
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
53 | 51, 52 | rspssp 20410 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ ∪ 𝑇
⊆ 𝑝) → (𝐾‘∪ 𝑇)
⊆ 𝑝) |
54 | 27, 29, 50, 53 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝐾‘∪ 𝑇) ⊆ 𝑝) |
55 | 1, 25, 54 | elrabd 3619 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) |
56 | 3 | a1i 11 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
57 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑖 = (𝐾‘∪ 𝑇) → (𝑖 ⊆ 𝑗 ↔ (𝐾‘∪ 𝑇) ⊆ 𝑗)) |
58 | 57 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝑖 = (𝐾‘∪ 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) |
59 | 58 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾‘∪ 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) |
60 | 8 | sselda 3917 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 ∈ 𝑇) → 𝑖 ∈ (LIdeal‘𝑅)) |
61 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
62 | 61, 52 | lidlss 20394 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅)) |
63 | 60, 62 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 ∈ 𝑇) → 𝑖 ⊆ (Base‘𝑅)) |
64 | 63 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖 ∈ 𝑇 𝑖 ⊆ (Base‘𝑅)) |
65 | | unissb 4870 |
. . . . . . . . 9
⊢ (∪ 𝑇
⊆ (Base‘𝑅)
↔ ∀𝑖 ∈
𝑇 𝑖 ⊆ (Base‘𝑅)) |
66 | 64, 65 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∪ 𝑇
⊆ (Base‘𝑅)) |
67 | 51, 61, 52 | rspcl 20406 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ ∪ 𝑇
⊆ (Base‘𝑅))
→ (𝐾‘∪ 𝑇)
∈ (LIdeal‘𝑅)) |
68 | 26, 66, 67 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾‘∪ 𝑇) ∈ (LIdeal‘𝑅)) |
69 | 10 | rabex 5251 |
. . . . . . . 8
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ∈ V |
70 | 69 | a1i 11 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ∈ V) |
71 | 56, 59, 68, 70 | fvmptd 6864 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾‘∪ 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) |
72 | 71 | eleq2d 2824 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗})) |
73 | 72 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → (𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗})) |
74 | 55, 73 | mpbird 256 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) → 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) |
75 | 72 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗}) |
76 | 1 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾‘∪ 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾‘∪ 𝑇) ⊆ 𝑝)) |
77 | 75, 76 | sylib 217 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾‘∪ 𝑇) ⊆ 𝑝)) |
78 | 77 | simpld 494 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅)) |
79 | 78 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅)) |
80 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑙 ∈ 𝑇 → 𝑙 ⊆ ∪ 𝑇) |
81 | 80 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ ∪ 𝑇) |
82 | | simpll 763 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)) |
83 | 51, 61 | rspssid 20407 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ∪ 𝑇
⊆ (Base‘𝑅))
→ ∪ 𝑇 ⊆ (𝐾‘∪ 𝑇)) |
84 | 26, 66, 83 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∪ 𝑇
⊆ (𝐾‘∪ 𝑇)) |
85 | 82, 84 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → ∪ 𝑇 ⊆ (𝐾‘∪ 𝑇)) |
86 | 81, 85 | sstrd 3927 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ (𝐾‘∪ 𝑇)) |
87 | 77 | simprd 495 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝐾‘∪ 𝑇) ⊆ 𝑝) |
88 | 87 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝐾‘∪ 𝑇) ⊆ 𝑝) |
89 | 86, 88 | sstrd 3927 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ⊆ 𝑝) |
90 | 43, 79, 89 | elrabd 3619 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
91 | 8 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅)) |
92 | 91 | sselda 3917 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑙 ∈ (LIdeal‘𝑅)) |
93 | 3 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
94 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
95 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅)) |
96 | 11 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗} ∈ V) |
97 | 93, 94, 95, 96 | fvmptd 6864 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
98 | 82, 92, 97 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → (𝑉‘𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙 ⊆ 𝑗}) |
99 | 90, 98 | eleqtrrd 2842 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) ∧ 𝑙 ∈ 𝑇) → 𝑝 ∈ (𝑉‘𝑙)) |
100 | 99 | ralrimiva 3107 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙)) |
101 | 20 | a1i 11 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ ∀𝑙 ∈ 𝑇 𝑝 ∈ (𝑉‘𝑙))) |
102 | 100, 101 | mpbird 256 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇))) → 𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙)) |
103 | 74, 102 | impbida 797 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ ∩
𝑙 ∈ 𝑇 (𝑉‘𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾‘∪ 𝑇)))) |
104 | 103 | eqrdv 2736 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) = (𝑉‘(𝐾‘∪ 𝑇))) |