Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsiin Structured version   Visualization version   GIF version

Theorem zarclsiin 31224
Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclsiin.1 𝐾 = (RSpan‘𝑅)
Assertion
Ref Expression
zarclsiin ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Distinct variable groups:   𝑅,𝑖,𝑗,𝑙   𝑉,𝑙   𝑖,𝐾,𝑗,𝑙   𝑇,𝑖,𝑗,𝑙
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarclsiin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3944 . . . . 5 (𝑗 = 𝑝 → ((𝐾 𝑇) ⊆ 𝑗 ↔ (𝐾 𝑇) ⊆ 𝑝))
2 simpl3 1190 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇 ≠ ∅)
3 zarclsx.1 . . . . . . . . . . . 12 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
43a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5 sseq1 3943 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
65rabbidv 3430 . . . . . . . . . . . 12 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
76adantl 485 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8 simp2 1134 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (LIdeal‘𝑅))
98sselda 3918 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
10 fvex 6662 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
1110rabex 5202 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
134, 7, 9, 12fvmptd 6756 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
14 ssrab2 4010 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅)
1514a1i 11 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ⊆ (PrmIdeal‘𝑅))
1613, 15eqsstrd 3956 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑉𝑙) ⊆ (PrmIdeal‘𝑅))
1716sseld 3917 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙𝑇) → (𝑝 ∈ (𝑉𝑙) → 𝑝 ∈ (PrmIdeal‘𝑅)))
1817ralimdva 3147 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)))
19 eliin 4889 . . . . . . . . 9 (𝑝 ∈ V → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
2019elv 3449 . . . . . . . 8 (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2120biimpi 219 . . . . . . 7 (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
2218, 21impel 509 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅))
23 rspn0 4269 . . . . . . 7 (𝑇 ≠ ∅ → (∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅) → 𝑝 ∈ (PrmIdeal‘𝑅)))
2423imp 410 . . . . . 6 ((𝑇 ≠ ∅ ∧ ∀𝑙𝑇 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (PrmIdeal‘𝑅))
252, 22, 24syl2anc 587 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (PrmIdeal‘𝑅))
26 simp1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑅 ∈ Ring)
2726adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑅 ∈ Ring)
28 prmidlidl 31027 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (PrmIdeal‘𝑅)) → 𝑝 ∈ (LIdeal‘𝑅))
2927, 25, 28syl2anc 587 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (LIdeal‘𝑅))
30 nfv 1915 . . . . . . . . 9 𝑙(𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅)
31 nfcv 2958 . . . . . . . . . 10 𝑙𝑝
32 nfii1 4919 . . . . . . . . . 10 𝑙 𝑙𝑇 (𝑉𝑙)
3331, 32nfel 2972 . . . . . . . . 9 𝑙 𝑝 𝑙𝑇 (𝑉𝑙)
3430, 33nfan 1900 . . . . . . . 8 𝑙((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙))
3521a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
3635imp 410 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
3736adantr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
38 simpr 488 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑇)
39 rspa 3174 . . . . . . . . . . . . 13 ((∀𝑙𝑇 𝑝 ∈ (𝑉𝑙) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4037, 38, 39syl2anc 587 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
4113adantlr 714 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
4240, 41eleqtrd 2895 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
43 sseq2 3944 . . . . . . . . . . . 12 (𝑗 = 𝑝 → (𝑙𝑗𝑙𝑝))
4443elrab 3631 . . . . . . . . . . 11 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4542, 44sylib 221 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ 𝑙𝑝))
4645simprd 499 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) ∧ 𝑙𝑇) → 𝑙𝑝)
4746ex 416 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑙𝑇𝑙𝑝))
4834, 47ralrimi 3183 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → ∀𝑙𝑇 𝑙𝑝)
49 unissb 4835 . . . . . . 7 ( 𝑇𝑝 ↔ ∀𝑙𝑇 𝑙𝑝)
5048, 49sylibr 237 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑇𝑝)
51 zarclsiin.1 . . . . . . 7 𝐾 = (RSpan‘𝑅)
52 eqid 2801 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5351, 52rspssp 19995 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (LIdeal‘𝑅) ∧ 𝑇𝑝) → (𝐾 𝑇) ⊆ 𝑝)
5427, 29, 50, 53syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝐾 𝑇) ⊆ 𝑝)
551, 25, 54elrabd 3633 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
563a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
57 sseq1 3943 . . . . . . . . 9 (𝑖 = (𝐾 𝑇) → (𝑖𝑗 ↔ (𝐾 𝑇) ⊆ 𝑗))
5857rabbidv 3430 . . . . . . . 8 (𝑖 = (𝐾 𝑇) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
5958adantl 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖 = (𝐾 𝑇)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
608sselda 3918 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ∈ (LIdeal‘𝑅))
61 eqid 2801 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6261, 52lidlss 19979 . . . . . . . . . . 11 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
6360, 62syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑖𝑇) → 𝑖 ⊆ (Base‘𝑅))
6463ralrimiva 3152 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
65 unissb 4835 . . . . . . . . 9 ( 𝑇 ⊆ (Base‘𝑅) ↔ ∀𝑖𝑇 𝑖 ⊆ (Base‘𝑅))
6664, 65sylibr 237 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (Base‘𝑅))
6751, 61, 52rspcl 19991 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6826, 66, 67syl2anc 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝐾 𝑇) ∈ (LIdeal‘𝑅))
6910rabex 5202 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ∈ V)
7156, 59, 68, 70fvmptd 6756 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑉‘(𝐾 𝑇)) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
7271eleq2d 2878 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7372adantr 484 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → (𝑝 ∈ (𝑉‘(𝐾 𝑇)) ↔ 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗}))
7455, 73mpbird 260 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 𝑙𝑇 (𝑉𝑙)) → 𝑝 ∈ (𝑉‘(𝐾 𝑇)))
7572biimpa 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗})
761elrab 3631 . . . . . . . . . 10 (𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝐾 𝑇) ⊆ 𝑗} ↔ (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7775, 76sylib 221 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 ∈ (PrmIdeal‘𝑅) ∧ (𝐾 𝑇) ⊆ 𝑝))
7877simpld 498 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 ∈ (PrmIdeal‘𝑅))
7978adantr 484 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (PrmIdeal‘𝑅))
80 elssuni 4833 . . . . . . . . . 10 (𝑙𝑇𝑙 𝑇)
8180adantl 485 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 𝑇)
82 simpll 766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅))
8351, 61rspssid 19992 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (Base‘𝑅)) → 𝑇 ⊆ (𝐾 𝑇))
8426, 66, 83syl2anc 587 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ (𝐾 𝑇))
8582, 84syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑇 ⊆ (𝐾 𝑇))
8681, 85sstrd 3928 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ⊆ (𝐾 𝑇))
8777simprd 499 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝐾 𝑇) ⊆ 𝑝)
8887adantr 484 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝐾 𝑇) ⊆ 𝑝)
8986, 88sstrd 3928 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙𝑝)
9043, 79, 89elrabd 3633 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
918adantr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑇 ⊆ (LIdeal‘𝑅))
9291sselda 3918 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑙 ∈ (LIdeal‘𝑅))
933a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
946adantl 485 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝑙) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
95 simpr 488 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
9611a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∈ V)
9793, 94, 95, 96fvmptd 6756 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑙 ∈ (LIdeal‘𝑅)) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9882, 92, 97syl2anc 587 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → (𝑉𝑙) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
9990, 98eleqtrrd 2896 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) ∧ 𝑙𝑇) → 𝑝 ∈ (𝑉𝑙))
10099ralrimiva 3152 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙))
10120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ ∀𝑙𝑇 𝑝 ∈ (𝑉𝑙)))
102100, 101mpbird 260 . . 3 (((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) ∧ 𝑝 ∈ (𝑉‘(𝐾 𝑇))) → 𝑝 𝑙𝑇 (𝑉𝑙))
10374, 102impbida 800 . 2 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → (𝑝 𝑙𝑇 (𝑉𝑙) ↔ 𝑝 ∈ (𝑉‘(𝐾 𝑇))))
104103eqrdv 2799 1 ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → 𝑙𝑇 (𝑉𝑙) = (𝑉‘(𝐾 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  {crab 3113  Vcvv 3444  wss 3884  c0 4246   cuni 4803   ciin 4885  cmpt 5113  cfv 6328  Basecbs 16478  Ringcrg 19293  LIdealclidl 19938  RSpancrsp 19939  PrmIdealcprmidl 31018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-prmidl 31019
This theorem is referenced by:  zarclsint  31225  zarcmplem  31234
  Copyright terms: Public domain W3C validator