| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrregdegfi | Structured version Visualization version GIF version | ||
| Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrregdegfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrusgr0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | vtxdgfusgr 29458 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0) |
| 3 | r19.26 3104 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) ↔ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | |
| 4 | isrusgr0.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 5 | 4 | fveq1i 6906 | . . . . . . . . . . 11 ⊢ (𝐷‘𝑣) = ((VtxDeg‘𝐺)‘𝑣) |
| 6 | 5 | eqeq1i 2734 | . . . . . . . . . 10 ⊢ ((𝐷‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
| 7 | eleq1 2817 | . . . . . . . . . 10 ⊢ (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) | |
| 8 | 6, 7 | sylbi 216 | . . . . . . . . 9 ⊢ ((𝐷‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) |
| 9 | 8 | biimpac 477 | . . . . . . . 8 ⊢ ((((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0) |
| 10 | 9 | ralimi 3076 | . . . . . . 7 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → ∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0) |
| 11 | rspn0 4362 | . . . . . . 7 ⊢ (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0)) | |
| 12 | 10, 11 | syl5com 31 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
| 13 | 3, 12 | sylbir 234 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
| 14 | 13 | ex 411 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0))) |
| 15 | 14 | com23 86 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
| 16 | 2, 15 | syl 17 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
| 17 | 16 | imp 405 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2100 ≠ wne 2933 ∀wral 3054 ∅c0 4335 ‘cfv 6558 ℕ0cn0 12534 Vtxcvtx 28955 FinUSGraphcfusgr 29275 VtxDegcvtxdg 29425 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5293 ax-sep 5307 ax-nul 5314 ax-pow 5373 ax-pr 5437 ax-un 7751 ax-cnex 11221 ax-resscn 11222 ax-1cn 11223 ax-icn 11224 ax-addcl 11225 ax-addrcl 11226 ax-mulcl 11227 ax-mulrcl 11228 ax-mulcom 11229 ax-addass 11230 ax-mulass 11231 ax-distr 11232 ax-i2m1 11233 ax-1ne0 11234 ax-1rid 11235 ax-rnegex 11236 ax-rrecex 11237 ax-cnre 11238 ax-pre-lttri 11239 ax-pre-lttrn 11240 ax-pre-ltadd 11241 ax-pre-mulgt0 11242 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-rmo 3373 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3789 df-csb 3905 df-dif 3962 df-un 3964 df-in 3966 df-ss 3976 df-pss 3979 df-nul 4336 df-if 4537 df-pw 4612 df-sn 4637 df-pr 4639 df-op 4643 df-uni 4919 df-int 4960 df-iun 5008 df-br 5157 df-opab 5219 df-mpt 5240 df-tr 5274 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5641 df-we 5643 df-xp 5692 df-rel 5693 df-cnv 5694 df-co 5695 df-dm 5696 df-rn 5697 df-res 5698 df-ima 5699 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7386 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7885 df-1st 8011 df-2nd 8012 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8742 df-en 8983 df-dom 8984 df-sdom 8985 df-fin 8986 df-dju 9951 df-card 9989 df-pnf 11307 df-mnf 11308 df-xr 11309 df-ltxr 11310 df-le 11311 df-sub 11503 df-neg 11504 df-nn 12275 df-2 12337 df-n0 12535 df-xnn0 12607 df-z 12621 df-uz 12885 df-xadd 13157 df-fz 13549 df-hash 14360 df-vtx 28957 df-iedg 28958 df-edg 29007 df-uhgr 29017 df-upgr 29041 df-umgr 29042 df-uspgr 29109 df-usgr 29110 df-fusgr 29276 df-vtxdg 29426 |
| This theorem is referenced by: fusgrn0eqdrusgr 29530 frusgrnn0 29531 fusgreghash2wsp 30294 frrusgrord0lem 30295 |
| Copyright terms: Public domain | W3C validator |