![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrregdegfi | Structured version Visualization version GIF version |
Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | β’ π = (VtxβπΊ) |
isrusgr0.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
fusgrregdegfi | β’ ((πΊ β FinUSGraph β§ π β β ) β (βπ£ β π (π·βπ£) = πΎ β πΎ β β0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr0.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | vtxdgfusgr 29019 | . . 3 β’ (πΊ β FinUSGraph β βπ£ β π ((VtxDegβπΊ)βπ£) β β0) |
3 | r19.26 3110 | . . . . . 6 β’ (βπ£ β π (((VtxDegβπΊ)βπ£) β β0 β§ (π·βπ£) = πΎ) β (βπ£ β π ((VtxDegβπΊ)βπ£) β β0 β§ βπ£ β π (π·βπ£) = πΎ)) | |
4 | isrusgr0.d | . . . . . . . . . . . 12 β’ π· = (VtxDegβπΊ) | |
5 | 4 | fveq1i 6893 | . . . . . . . . . . 11 β’ (π·βπ£) = ((VtxDegβπΊ)βπ£) |
6 | 5 | eqeq1i 2736 | . . . . . . . . . 10 β’ ((π·βπ£) = πΎ β ((VtxDegβπΊ)βπ£) = πΎ) |
7 | eleq1 2820 | . . . . . . . . . 10 β’ (((VtxDegβπΊ)βπ£) = πΎ β (((VtxDegβπΊ)βπ£) β β0 β πΎ β β0)) | |
8 | 6, 7 | sylbi 216 | . . . . . . . . 9 β’ ((π·βπ£) = πΎ β (((VtxDegβπΊ)βπ£) β β0 β πΎ β β0)) |
9 | 8 | biimpac 478 | . . . . . . . 8 β’ ((((VtxDegβπΊ)βπ£) β β0 β§ (π·βπ£) = πΎ) β πΎ β β0) |
10 | 9 | ralimi 3082 | . . . . . . 7 β’ (βπ£ β π (((VtxDegβπΊ)βπ£) β β0 β§ (π·βπ£) = πΎ) β βπ£ β π πΎ β β0) |
11 | rspn0 4353 | . . . . . . 7 β’ (π β β β (βπ£ β π πΎ β β0 β πΎ β β0)) | |
12 | 10, 11 | syl5com 31 | . . . . . 6 β’ (βπ£ β π (((VtxDegβπΊ)βπ£) β β0 β§ (π·βπ£) = πΎ) β (π β β β πΎ β β0)) |
13 | 3, 12 | sylbir 234 | . . . . 5 β’ ((βπ£ β π ((VtxDegβπΊ)βπ£) β β0 β§ βπ£ β π (π·βπ£) = πΎ) β (π β β β πΎ β β0)) |
14 | 13 | ex 412 | . . . 4 β’ (βπ£ β π ((VtxDegβπΊ)βπ£) β β0 β (βπ£ β π (π·βπ£) = πΎ β (π β β β πΎ β β0))) |
15 | 14 | com23 86 | . . 3 β’ (βπ£ β π ((VtxDegβπΊ)βπ£) β β0 β (π β β β (βπ£ β π (π·βπ£) = πΎ β πΎ β β0))) |
16 | 2, 15 | syl 17 | . 2 β’ (πΊ β FinUSGraph β (π β β β (βπ£ β π (π·βπ£) = πΎ β πΎ β β0))) |
17 | 16 | imp 406 | 1 β’ ((πΊ β FinUSGraph β§ π β β ) β (βπ£ β π (π·βπ£) = πΎ β πΎ β β0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 β c0 4323 βcfv 6544 β0cn0 12477 Vtxcvtx 28520 FinUSGraphcfusgr 28837 VtxDegcvtxdg 28986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xadd 13098 df-fz 13490 df-hash 14296 df-vtx 28522 df-iedg 28523 df-edg 28572 df-uhgr 28582 df-upgr 28606 df-umgr 28607 df-uspgr 28674 df-usgr 28675 df-fusgr 28838 df-vtxdg 28987 |
This theorem is referenced by: fusgrn0eqdrusgr 29091 frusgrnn0 29092 fusgreghash2wsp 29855 frrusgrord0lem 29856 |
Copyright terms: Public domain | W3C validator |