![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrregdegfi | Structured version Visualization version GIF version |
Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
fusgrregdegfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | vtxdgfusgr 26973 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0) |
3 | r19.26 3114 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) ↔ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | |
4 | isrusgr0.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
5 | 4 | fveq1i 6494 | . . . . . . . . . . 11 ⊢ (𝐷‘𝑣) = ((VtxDeg‘𝐺)‘𝑣) |
6 | 5 | eqeq1i 2777 | . . . . . . . . . 10 ⊢ ((𝐷‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
7 | eleq1 2847 | . . . . . . . . . 10 ⊢ (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) | |
8 | 6, 7 | sylbi 209 | . . . . . . . . 9 ⊢ ((𝐷‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) |
9 | 8 | biimpac 471 | . . . . . . . 8 ⊢ ((((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0) |
10 | 9 | ralimi 3104 | . . . . . . 7 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → ∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0) |
11 | rspn0 4194 | . . . . . . 7 ⊢ (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0)) | |
12 | 10, 11 | syl5com 31 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
13 | 3, 12 | sylbir 227 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
14 | 13 | ex 405 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0))) |
15 | 14 | com23 86 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
16 | 2, 15 | syl 17 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
17 | 16 | imp 398 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 ∅c0 4173 ‘cfv 6182 ℕ0cn0 11700 Vtxcvtx 26474 FinUSGraphcfusgr 26791 VtxDegcvtxdg 26940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-dju 9116 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-n0 11701 df-xnn0 11773 df-z 11787 df-uz 12052 df-xadd 12318 df-fz 12702 df-hash 13499 df-vtx 26476 df-iedg 26477 df-edg 26526 df-uhgr 26536 df-upgr 26560 df-umgr 26561 df-uspgr 26628 df-usgr 26629 df-fusgr 26792 df-vtxdg 26941 |
This theorem is referenced by: fusgrn0eqdrusgr 27045 frusgrnn0 27046 fusgreghash2wsp 27862 frrusgrord0lem 27863 |
Copyright terms: Public domain | W3C validator |