| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrregdegfi | Structured version Visualization version GIF version | ||
| Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrregdegfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrusgr0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | vtxdgfusgr 29483 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0) |
| 3 | r19.26 3099 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) ↔ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | |
| 4 | isrusgr0.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 5 | 4 | fveq1i 6882 | . . . . . . . . . . 11 ⊢ (𝐷‘𝑣) = ((VtxDeg‘𝐺)‘𝑣) |
| 6 | 5 | eqeq1i 2741 | . . . . . . . . . 10 ⊢ ((𝐷‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
| 7 | eleq1 2823 | . . . . . . . . . 10 ⊢ (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) | |
| 8 | 6, 7 | sylbi 217 | . . . . . . . . 9 ⊢ ((𝐷‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0)) |
| 9 | 8 | biimpac 478 | . . . . . . . 8 ⊢ ((((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0) |
| 10 | 9 | ralimi 3074 | . . . . . . 7 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → ∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0) |
| 11 | rspn0 4336 | . . . . . . 7 ⊢ (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0)) | |
| 12 | 10, 11 | syl5com 31 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
| 13 | 3, 12 | sylbir 235 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0))) |
| 15 | 14 | com23 86 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
| 16 | 2, 15 | syl 17 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝑉 ≠ ∅ → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0))) |
| 17 | 16 | imp 406 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∅c0 4313 ‘cfv 6536 ℕ0cn0 12506 Vtxcvtx 28980 FinUSGraphcfusgr 29300 VtxDegcvtxdg 29450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-vtx 28982 df-iedg 28983 df-edg 29032 df-uhgr 29042 df-upgr 29066 df-umgr 29067 df-uspgr 29134 df-usgr 29135 df-fusgr 29301 df-vtxdg 29451 |
| This theorem is referenced by: fusgrn0eqdrusgr 29555 frusgrnn0 29556 fusgreghash2wsp 30324 frrusgrord0lem 30325 |
| Copyright terms: Public domain | W3C validator |