MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrregdegfi Structured version   Visualization version   GIF version

Theorem fusgrregdegfi 29529
Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
fusgrregdegfi ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾𝐾 ∈ ℕ0))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉
Allowed substitution hint:   𝐷(𝑣)

Proof of Theorem fusgrregdegfi
StepHypRef Expression
1 isrusgr0.v . . . 4 𝑉 = (Vtx‘𝐺)
21vtxdgfusgr 29458 . . 3 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
3 r19.26 3104 . . . . . 6 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
4 isrusgr0.d . . . . . . . . . . . 12 𝐷 = (VtxDeg‘𝐺)
54fveq1i 6906 . . . . . . . . . . 11 (𝐷𝑣) = ((VtxDeg‘𝐺)‘𝑣)
65eqeq1i 2734 . . . . . . . . . 10 ((𝐷𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)
7 eleq1 2817 . . . . . . . . . 10 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0𝐾 ∈ ℕ0))
86, 7sylbi 216 . . . . . . . . 9 ((𝐷𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0𝐾 ∈ ℕ0))
98biimpac 477 . . . . . . . 8 ((((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
109ralimi 3076 . . . . . . 7 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷𝑣) = 𝐾) → ∀𝑣𝑉 𝐾 ∈ ℕ0)
11 rspn0 4362 . . . . . . 7 (𝑉 ≠ ∅ → (∀𝑣𝑉 𝐾 ∈ ℕ0𝐾 ∈ ℕ0))
1210, 11syl5com 31 . . . . . 6 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ (𝐷𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0))
133, 12sylbir 234 . . . . 5 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0))
1413ex 411 . . . 4 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝑉 ≠ ∅ → 𝐾 ∈ ℕ0)))
1514com23 86 . . 3 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (𝑉 ≠ ∅ → (∀𝑣𝑉 (𝐷𝑣) = 𝐾𝐾 ∈ ℕ0)))
162, 15syl 17 . 2 (𝐺 ∈ FinUSGraph → (𝑉 ≠ ∅ → (∀𝑣𝑉 (𝐷𝑣) = 𝐾𝐾 ∈ ℕ0)))
1716imp 405 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾𝐾 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2100  wne 2933  wral 3054  c0 4335  cfv 6558  0cn0 12534  Vtxcvtx 28955  FinUSGraphcfusgr 29275  VtxDegcvtxdg 29425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-10 2133  ax-11 2150  ax-12 2170  ax-ext 2700  ax-rep 5293  ax-sep 5307  ax-nul 5314  ax-pow 5373  ax-pr 5437  ax-un 7751  ax-cnex 11221  ax-resscn 11222  ax-1cn 11223  ax-icn 11224  ax-addcl 11225  ax-addrcl 11226  ax-mulcl 11227  ax-mulrcl 11228  ax-mulcom 11229  ax-addass 11230  ax-mulass 11231  ax-distr 11232  ax-i2m1 11233  ax-1ne0 11234  ax-1rid 11235  ax-rnegex 11236  ax-rrecex 11237  ax-cnre 11238  ax-pre-lttri 11239  ax-pre-lttrn 11240  ax-pre-ltadd 11241  ax-pre-mulgt0 11242
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2062  df-mo 2532  df-eu 2561  df-clab 2707  df-cleq 2721  df-clel 2806  df-nfc 2881  df-ne 2934  df-nel 3040  df-ral 3055  df-rex 3064  df-rmo 3373  df-reu 3374  df-rab 3429  df-v 3474  df-sbc 3789  df-csb 3905  df-dif 3962  df-un 3964  df-in 3966  df-ss 3976  df-pss 3979  df-nul 4336  df-if 4537  df-pw 4612  df-sn 4637  df-pr 4639  df-op 4643  df-uni 4919  df-int 4960  df-iun 5008  df-br 5157  df-opab 5219  df-mpt 5240  df-tr 5274  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5641  df-we 5643  df-xp 5692  df-rel 5693  df-cnv 5694  df-co 5695  df-dm 5696  df-rn 5697  df-res 5698  df-ima 5699  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7386  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7885  df-1st 8011  df-2nd 8012  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8742  df-en 8983  df-dom 8984  df-sdom 8985  df-fin 8986  df-dju 9951  df-card 9989  df-pnf 11307  df-mnf 11308  df-xr 11309  df-ltxr 11310  df-le 11311  df-sub 11503  df-neg 11504  df-nn 12275  df-2 12337  df-n0 12535  df-xnn0 12607  df-z 12621  df-uz 12885  df-xadd 13157  df-fz 13549  df-hash 14360  df-vtx 28957  df-iedg 28958  df-edg 29007  df-uhgr 29017  df-upgr 29041  df-umgr 29042  df-uspgr 29109  df-usgr 29110  df-fusgr 29276  df-vtxdg 29426
This theorem is referenced by:  fusgrn0eqdrusgr  29530  frusgrnn0  29531  fusgreghash2wsp  30294  frrusgrord0lem  30295
  Copyright terms: Public domain W3C validator