MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrewlkle2 Structured version   Visualization version   GIF version

Theorem upgrewlkle2 27396
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
upgrewlkle2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)

Proof of Theorem upgrewlkle2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 27393 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 fvex 6658 . . . . . . . . . . 11 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
4 hashin 13768 . . . . . . . . . . 11 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
53, 4ax-mp 5 . . . . . . . . . 10 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6 simpl3 1190 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 upgruhgr 26895 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81uhgrfun 26859 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109funfnd 6355 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11103ad2ant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
13 elfzofz 13048 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13080 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
16 wrdsymbcl 13870 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
1715, 16sylan2 595 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
18173ad2antl2 1183 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
19 eqid 2798 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
2019, 1upgrle 26883 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
216, 12, 18, 20syl3anc 1368 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
223inex1 5185 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
23 hashxrcl 13714 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*
25 hashxrcl 13714 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*)
263, 25ax-mp 5 . . . . . . . . . . . . . 14 (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*
27 2re 11699 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2827rexri 10688 . . . . . . . . . . . . . 14 2 ∈ ℝ*
2924, 26, 283pm3.2i 1336 . . . . . . . . . . . . 13 ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*)
3029a1i 11 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*))
31 xrletr 12539 . . . . . . . . . . . 12 (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3321, 32mpan2d 693 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
345, 33mpi 20 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2)
35 xnn0xr 11960 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
3624a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
3728a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → 2 ∈ ℝ*)
38 xrletr 12539 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
3935, 36, 37, 38syl3anc 1368 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0* → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4039expcomd 420 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4140adantl 485 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
42413ad2ant1 1130 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4342adantr 484 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4434, 43mpd 15 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2))
4544ralimdva 3144 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
46453exp 1116 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐺 ∈ UPGraph → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
4746com34 91 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
48473imp 1108 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
49 lencl 13876 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
50 1zzd 12001 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℤ)
51 nn0z 11993 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
52 fzon 13053 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
5350, 51, 52syl2anc 587 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
54 nn0re 11894 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
55 1red 10631 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
5654, 55lenltd 10775 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ ¬ 1 < (♯‘𝐹)))
5753, 56bitr3d 284 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ ↔ ¬ 1 < (♯‘𝐹)))
5857biimpd 232 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ → ¬ 1 < (♯‘𝐹)))
5958necon2ad 3002 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1..^(♯‘𝐹)) ≠ ∅))
60 rspn0 4266 . . . . . . . 8 ((1..^(♯‘𝐹)) ≠ ∅ → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
6159, 60syl6com 37 . . . . . . 7 (1 < (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2)))
6261com3l 89 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6349, 62syl 17 . . . . 5 (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
64633ad2ant2 1131 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6548, 64syld 47 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
662, 65syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
67663imp21 1111 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cin 3880  c0 4243   class class class wbr 5030  dom cdm 5519  Fun wfun 6318   Fn wfn 6319  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  *cxr 10663   < clt 10664  cle 10665  cmin 10859  2c2 11680  0cn0 11885  0*cxnn0 11955  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  iEdgciedg 26790  UHGraphcuhgr 26849  UPGraphcupgr 26873   EdgWalks cewlks 27385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-uhgr 26851  df-upgr 26875  df-ewlks 27388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator