MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrewlkle2 Structured version   Visualization version   GIF version

Theorem upgrewlkle2 27548
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
upgrewlkle2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)

Proof of Theorem upgrewlkle2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 27545 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 fvex 6687 . . . . . . . . . . 11 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
4 hashin 13864 . . . . . . . . . . 11 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
53, 4ax-mp 5 . . . . . . . . . 10 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6 simpl3 1194 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 upgruhgr 27047 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81uhgrfun 27011 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109funfnd 6370 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11103ad2ant3 1136 . . . . . . . . . . . . 13 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
13 elfzofz 13144 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13176 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
16 wrdsymbcl 13968 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
1715, 16sylan2 596 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
18173ad2antl2 1187 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
19 eqid 2738 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
2019, 1upgrle 27035 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
216, 12, 18, 20syl3anc 1372 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
223inex1 5185 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
23 hashxrcl 13810 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*
25 hashxrcl 13810 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*)
263, 25ax-mp 5 . . . . . . . . . . . . . 14 (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*
27 2re 11790 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2827rexri 10777 . . . . . . . . . . . . . 14 2 ∈ ℝ*
2924, 26, 283pm3.2i 1340 . . . . . . . . . . . . 13 ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*)
3029a1i 11 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*))
31 xrletr 12634 . . . . . . . . . . . 12 (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3321, 32mpan2d 694 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
345, 33mpi 20 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2)
35 xnn0xr 12053 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
3624a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
3728a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → 2 ∈ ℝ*)
38 xrletr 12634 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
3935, 36, 37, 38syl3anc 1372 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0* → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4039expcomd 420 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4140adantl 485 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
42413ad2ant1 1134 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4342adantr 484 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4434, 43mpd 15 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2))
4544ralimdva 3091 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
46453exp 1120 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐺 ∈ UPGraph → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
4746com34 91 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
48473imp 1112 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
49 lencl 13974 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
50 1zzd 12094 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℤ)
51 nn0z 12086 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
52 fzon 13149 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
5350, 51, 52syl2anc 587 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
54 nn0re 11985 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
55 1red 10720 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
5654, 55lenltd 10864 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ ¬ 1 < (♯‘𝐹)))
5753, 56bitr3d 284 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ ↔ ¬ 1 < (♯‘𝐹)))
5857biimpd 232 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ → ¬ 1 < (♯‘𝐹)))
5958necon2ad 2949 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1..^(♯‘𝐹)) ≠ ∅))
60 rspn0 4241 . . . . . . . 8 ((1..^(♯‘𝐹)) ≠ ∅ → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
6159, 60syl6com 37 . . . . . . 7 (1 < (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2)))
6261com3l 89 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6349, 62syl 17 . . . . 5 (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
64633ad2ant2 1135 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6548, 64syld 47 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
662, 65syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
67663imp21 1115 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  Vcvv 3398  cin 3842  c0 4211   class class class wbr 5030  dom cdm 5525  Fun wfun 6333   Fn wfn 6334  cfv 6339  (class class class)co 7170  0cc0 10615  1c1 10616  *cxr 10752   < clt 10753  cle 10754  cmin 10948  2c2 11771  0cn0 11976  0*cxnn0 12048  cz 12062  ...cfz 12981  ..^cfzo 13124  chash 13782  Word cword 13955  Vtxcvtx 26941  iEdgciedg 26942  UHGraphcuhgr 27001  UPGraphcupgr 27025   EdgWalks cewlks 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-n0 11977  df-xnn0 12049  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-hash 13783  df-word 13956  df-uhgr 27003  df-upgr 27027  df-ewlks 27540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator