MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrewlkle2 Structured version   Visualization version   GIF version

Theorem upgrewlkle2 29642
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
upgrewlkle2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)

Proof of Theorem upgrewlkle2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 29639 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 fvex 6933 . . . . . . . . . . 11 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
4 hashin 14460 . . . . . . . . . . 11 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
53, 4ax-mp 5 . . . . . . . . . 10 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6 simpl3 1193 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 upgruhgr 29137 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81uhgrfun 29101 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109funfnd 6609 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11103ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
13 elfzofz 13732 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13764 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
16 wrdsymbcl 14575 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
1715, 16sylan2 592 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
18173ad2antl2 1186 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
19 eqid 2740 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
2019, 1upgrle 29125 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
216, 12, 18, 20syl3anc 1371 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
223inex1 5335 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
23 hashxrcl 14406 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*
25 hashxrcl 14406 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*)
263, 25ax-mp 5 . . . . . . . . . . . . . 14 (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*
27 2re 12367 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2827rexri 11348 . . . . . . . . . . . . . 14 2 ∈ ℝ*
2924, 26, 283pm3.2i 1339 . . . . . . . . . . . . 13 ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*)
3029a1i 11 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*))
31 xrletr 13220 . . . . . . . . . . . 12 (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3321, 32mpan2d 693 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
345, 33mpi 20 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2)
35 xnn0xr 12630 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
3624a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
3728a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → 2 ∈ ℝ*)
38 xrletr 13220 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
3935, 36, 37, 38syl3anc 1371 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0* → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4039expcomd 416 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4140adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
42413ad2ant1 1133 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4342adantr 480 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4434, 43mpd 15 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2))
4544ralimdva 3173 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
46453exp 1119 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐺 ∈ UPGraph → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
4746com34 91 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
48473imp 1111 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
49 lencl 14581 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
50 1zzd 12674 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℤ)
51 nn0z 12664 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
52 fzon 13737 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
5350, 51, 52syl2anc 583 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
54 nn0re 12562 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
55 1red 11291 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
5654, 55lenltd 11436 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ ¬ 1 < (♯‘𝐹)))
5753, 56bitr3d 281 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ ↔ ¬ 1 < (♯‘𝐹)))
5857biimpd 229 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ → ¬ 1 < (♯‘𝐹)))
5958necon2ad 2961 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1..^(♯‘𝐹)) ≠ ∅))
60 rspn0 4379 . . . . . . . 8 ((1..^(♯‘𝐹)) ≠ ∅ → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
6159, 60syl6com 37 . . . . . . 7 (1 < (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2)))
6261com3l 89 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6349, 62syl 17 . . . . 5 (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
64633ad2ant2 1134 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6548, 64syld 47 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
662, 65syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
67663imp21 1114 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cin 3975  c0 4352   class class class wbr 5166  dom cdm 5700  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  cmin 11520  2c2 12348  0cn0 12553  0*cxnn0 12625  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091  UPGraphcupgr 29115   EdgWalks cewlks 29631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-uhgr 29093  df-upgr 29117  df-ewlks 29634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator