MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrewlkle2 Structured version   Visualization version   GIF version

Theorem upgrewlkle2 28901
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
upgrewlkle2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)

Proof of Theorem upgrewlkle2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 28898 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 fvex 6904 . . . . . . . . . . 11 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
4 hashin 14373 . . . . . . . . . . 11 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
53, 4ax-mp 5 . . . . . . . . . 10 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6 simpl3 1193 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 upgruhgr 28400 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81uhgrfun 28364 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109funfnd 6579 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11103ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantr 481 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
13 elfzofz 13650 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13682 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
16 wrdsymbcl 14479 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
1715, 16sylan2 593 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
18173ad2antl2 1186 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
19 eqid 2732 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
2019, 1upgrle 28388 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
216, 12, 18, 20syl3anc 1371 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
223inex1 5317 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
23 hashxrcl 14319 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*
25 hashxrcl 14319 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*)
263, 25ax-mp 5 . . . . . . . . . . . . . 14 (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*
27 2re 12288 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2827rexri 11274 . . . . . . . . . . . . . 14 2 ∈ ℝ*
2924, 26, 283pm3.2i 1339 . . . . . . . . . . . . 13 ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*)
3029a1i 11 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*))
31 xrletr 13139 . . . . . . . . . . . 12 (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3321, 32mpan2d 692 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (♯‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
345, 33mpi 20 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2)
35 xnn0xr 12551 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
3624a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
3728a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → 2 ∈ ℝ*)
38 xrletr 13139 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
3935, 36, 37, 38syl3anc 1371 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0* → ((𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4039expcomd 417 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4140adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
42413ad2ant1 1133 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4342adantr 481 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4434, 43mpd 15 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2))
4544ralimdva 3167 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
46453exp 1119 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐺 ∈ UPGraph → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
4746com34 91 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))))
48473imp 1111 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2))
49 lencl 14485 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
50 1zzd 12595 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℤ)
51 nn0z 12585 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
52 fzon 13655 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
5350, 51, 52syl2anc 584 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ (1..^(♯‘𝐹)) = ∅))
54 nn0re 12483 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
55 1red 11217 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
5654, 55lenltd 11362 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≤ 1 ↔ ¬ 1 < (♯‘𝐹)))
5753, 56bitr3d 280 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ ↔ ¬ 1 < (♯‘𝐹)))
5857biimpd 228 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → ((1..^(♯‘𝐹)) = ∅ → ¬ 1 < (♯‘𝐹)))
5958necon2ad 2955 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1..^(♯‘𝐹)) ≠ ∅))
60 rspn0 4352 . . . . . . . 8 ((1..^(♯‘𝐹)) ≠ ∅ → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
6159, 60syl6com 37 . . . . . . 7 (1 < (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2)))
6261com3l 89 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6349, 62syl 17 . . . . 5 (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
64633ad2ant2 1134 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ 2 → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
6548, 64syld 47 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
662, 65syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ UPGraph → (1 < (♯‘𝐹) → 𝑆 ≤ 2)))
67663imp21 1114 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  cin 3947  c0 4322   class class class wbr 5148  dom cdm 5676  Fun wfun 6537   Fn wfn 6538  cfv 6543  (class class class)co 7411  0cc0 11112  1c1 11113  *cxr 11249   < clt 11250  cle 11251  cmin 11446  2c2 12269  0cn0 12474  0*cxnn0 12546  cz 12560  ...cfz 13486  ..^cfzo 13629  chash 14292  Word cword 14466  Vtxcvtx 28294  iEdgciedg 28295  UHGraphcuhgr 28354  UPGraphcupgr 28378   EdgWalks cewlks 28890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-hash 14293  df-word 14467  df-uhgr 28356  df-upgr 28380  df-ewlks 28893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator