MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1 Structured version   Visualization version   GIF version

Theorem efgs1 19753
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4131 . . . . 5 (𝐴 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → 𝐴𝑊)
2 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2859 . . . 4 (𝐴𝐷𝐴𝑊)
43s1cld 14641 . . 3 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ Word 𝑊)
5 s1nz 14645 . . 3 ⟨“𝐴”⟩ ≠ ∅
6 eldifsn 4786 . . 3 (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ↔ (⟨“𝐴”⟩ ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ≠ ∅))
74, 5, 6sylanblrc 590 . 2 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}))
8 s1fv 14648 . . 3 (𝐴𝐷 → (⟨“𝐴”⟩‘0) = 𝐴)
9 id 22 . . 3 (𝐴𝐷𝐴𝐷)
108, 9eqeltrd 2841 . 2 (𝐴𝐷 → (⟨“𝐴”⟩‘0) ∈ 𝐷)
11 s1len 14644 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
1211a1i 11 . . . . 5 (𝐴𝐷 → (♯‘⟨“𝐴”⟩) = 1)
1312oveq2d 7447 . . . 4 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = (1..^1))
14 fzo0 13723 . . . 4 (1..^1) = ∅
1513, 14eqtrdi 2793 . . 3 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = ∅)
16 rzal 4509 . . 3 ((1..^(♯‘⟨“𝐴”⟩)) = ∅ → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
1715, 16syl 17 . 2 (𝐴𝐷 → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
18 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
19 efgval.r . . 3 = ( ~FG𝐼)
20 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
21 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
22 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
2318, 19, 20, 21, 2, 22efgsdm 19748 . 2 (⟨“𝐴”⟩ ∈ dom 𝑆 ↔ (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ∧ (⟨“𝐴”⟩‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1)))))
247, 10, 17, 23syl3anbrc 1344 1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cdif 3948  c0 4333  {csn 4626  cop 4632  cotp 4634   ciun 4991  cmpt 5225   I cid 5577   × cxp 5683  dom cdm 5685  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499  2oc2o 8500  0cc0 11155  1c1 11156  cmin 11492  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  ⟨“cs1 14633   splice csplice 14787  ⟨“cs2 14880   ~FG cefg 19724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-s1 14634
This theorem is referenced by:  efgsfo  19757
  Copyright terms: Public domain W3C validator