MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1 Structured version   Visualization version   GIF version

Theorem efgs1 19777
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4154 . . . . 5 (𝐴 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → 𝐴𝑊)
2 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2862 . . . 4 (𝐴𝐷𝐴𝑊)
43s1cld 14651 . . 3 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ Word 𝑊)
5 s1nz 14655 . . 3 ⟨“𝐴”⟩ ≠ ∅
6 eldifsn 4811 . . 3 (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ↔ (⟨“𝐴”⟩ ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ≠ ∅))
74, 5, 6sylanblrc 589 . 2 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}))
8 s1fv 14658 . . 3 (𝐴𝐷 → (⟨“𝐴”⟩‘0) = 𝐴)
9 id 22 . . 3 (𝐴𝐷𝐴𝐷)
108, 9eqeltrd 2844 . 2 (𝐴𝐷 → (⟨“𝐴”⟩‘0) ∈ 𝐷)
11 s1len 14654 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
1211a1i 11 . . . . 5 (𝐴𝐷 → (♯‘⟨“𝐴”⟩) = 1)
1312oveq2d 7464 . . . 4 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = (1..^1))
14 fzo0 13740 . . . 4 (1..^1) = ∅
1513, 14eqtrdi 2796 . . 3 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = ∅)
16 rzal 4532 . . 3 ((1..^(♯‘⟨“𝐴”⟩)) = ∅ → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
1715, 16syl 17 . 2 (𝐴𝐷 → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
18 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
19 efgval.r . . 3 = ( ~FG𝐼)
20 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
21 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
22 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
2318, 19, 20, 21, 2, 22efgsdm 19772 . 2 (⟨“𝐴”⟩ ∈ dom 𝑆 ↔ (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ∧ (⟨“𝐴”⟩‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1)))))
247, 10, 17, 23syl3anbrc 1343 1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  c0 4352  {csn 4648  cop 4654  cotp 4656   ciun 5015  cmpt 5249   I cid 5592   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  0cc0 11184  1c1 11185  cmin 11520  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs1 14643   splice csplice 14797  ⟨“cs2 14890   ~FG cefg 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-s1 14644
This theorem is referenced by:  efgsfo  19781
  Copyright terms: Public domain W3C validator