Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgs1 | Structured version Visualization version GIF version |
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgs1 | ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4057 | . . . . 5 ⊢ (𝐴 ∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 𝐴 ∈ 𝑊) | |
2 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
3 | 1, 2 | eleq2s 2857 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝑊) |
4 | 3 | s1cld 14236 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ Word 𝑊) |
5 | s1nz 14240 | . . 3 ⊢ 〈“𝐴”〉 ≠ ∅ | |
6 | eldifsn 4717 | . . 3 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ (〈“𝐴”〉 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ≠ ∅)) | |
7 | 4, 5, 6 | sylanblrc 589 | . 2 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅})) |
8 | s1fv 14243 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) = 𝐴) | |
9 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
10 | 8, 9 | eqeltrd 2839 | . 2 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) ∈ 𝐷) |
11 | s1len 14239 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (♯‘〈“𝐴”〉) = 1) |
13 | 12 | oveq2d 7271 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = (1..^1)) |
14 | fzo0 13339 | . . . 4 ⊢ (1..^1) = ∅ | |
15 | 13, 14 | eqtrdi 2795 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = ∅) |
16 | rzal 4436 | . . 3 ⊢ ((1..^(♯‘〈“𝐴”〉)) = ∅ → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝐷 → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) |
18 | efgval.w | . . 3 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
19 | efgval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
20 | efgval2.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
21 | efgval2.t | . . 3 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
22 | efgred.s | . . 3 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
23 | 18, 19, 20, 21, 2, 22 | efgsdm 19251 | . 2 ⊢ (〈“𝐴”〉 ∈ dom 𝑆 ↔ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ∧ (〈“𝐴”〉‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1))))) |
24 | 7, 10, 17, 23 | syl3anbrc 1341 | 1 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∅c0 4253 {csn 4558 〈cop 4564 〈cotp 4566 ∪ ciun 4921 ↦ cmpt 5153 I cid 5479 × cxp 5578 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1oc1o 8260 2oc2o 8261 0cc0 10802 1c1 10803 − cmin 11135 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 〈“cs1 14228 splice csplice 14390 〈“cs2 14482 ~FG cefg 19227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-s1 14229 |
This theorem is referenced by: efgsfo 19260 |
Copyright terms: Public domain | W3C validator |