![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgs1 | Structured version Visualization version GIF version |
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgs1 | ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3959 | . . . . 5 ⊢ (𝐴 ∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 𝐴 ∈ 𝑊) | |
2 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
3 | 1, 2 | eleq2s 2924 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝑊) |
4 | 3 | s1cld 13663 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ Word 𝑊) |
5 | s1nz 13667 | . . . 4 ⊢ 〈“𝐴”〉 ≠ ∅ | |
6 | eldifsn 4536 | . . . 4 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ (〈“𝐴”〉 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ≠ ∅)) | |
7 | 5, 6 | mpbiran2 701 | . . 3 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ 〈“𝐴”〉 ∈ Word 𝑊) |
8 | 4, 7 | sylibr 226 | . 2 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅})) |
9 | s1fv 13670 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) = 𝐴) | |
10 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
11 | 9, 10 | eqeltrd 2906 | . 2 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) ∈ 𝐷) |
12 | s1len 13666 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (♯‘〈“𝐴”〉) = 1) |
14 | 13 | oveq2d 6921 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = (1..^1)) |
15 | fzo0 12787 | . . . 4 ⊢ (1..^1) = ∅ | |
16 | 14, 15 | syl6eq 2877 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = ∅) |
17 | rzal 4295 | . . 3 ⊢ ((1..^(♯‘〈“𝐴”〉)) = ∅ → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝐷 → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) |
19 | efgval.w | . . 3 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
20 | efgval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
21 | efgval2.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
22 | efgval2.t | . . 3 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
23 | efgred.s | . . 3 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
24 | 19, 20, 21, 22, 2, 23 | efgsdm 18494 | . 2 ⊢ (〈“𝐴”〉 ∈ dom 𝑆 ↔ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ∧ (〈“𝐴”〉‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1))))) |
25 | 8, 11, 18, 24 | syl3anbrc 1447 | 1 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∀wral 3117 {crab 3121 ∖ cdif 3795 ∅c0 4144 {csn 4397 〈cop 4403 〈cotp 4405 ∪ ciun 4740 ↦ cmpt 4952 I cid 5249 × cxp 5340 dom cdm 5342 ran crn 5343 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 1oc1o 7819 2oc2o 7820 0cc0 10252 1c1 10253 − cmin 10585 ...cfz 12619 ..^cfzo 12760 ♯chash 13410 Word cword 13574 〈“cs1 13655 splice csplice 13855 〈“cs2 13962 ~FG cefg 18470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-s1 13656 |
This theorem is referenced by: efgsfo 18504 |
Copyright terms: Public domain | W3C validator |