![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgs1 | Structured version Visualization version GIF version |
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | β’ π = ( I βWord (πΌ Γ 2o)) |
efgval.r | β’ βΌ = ( ~FG βπΌ) |
efgval2.m | β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
efgval2.t | β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
efgred.d | β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) |
efgred.s | β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
Ref | Expression |
---|---|
efgs1 | β’ (π΄ β π· β β¨βπ΄ββ© β dom π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4126 | . . . . 5 β’ (π΄ β (π β βͺ π₯ β π ran (πβπ₯)) β π΄ β π) | |
2 | efgred.d | . . . . 5 β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) | |
3 | 1, 2 | eleq2s 2851 | . . . 4 β’ (π΄ β π· β π΄ β π) |
4 | 3 | s1cld 14557 | . . 3 β’ (π΄ β π· β β¨βπ΄ββ© β Word π) |
5 | s1nz 14561 | . . 3 β’ β¨βπ΄ββ© β β | |
6 | eldifsn 4790 | . . 3 β’ (β¨βπ΄ββ© β (Word π β {β }) β (β¨βπ΄ββ© β Word π β§ β¨βπ΄ββ© β β )) | |
7 | 4, 5, 6 | sylanblrc 590 | . 2 β’ (π΄ β π· β β¨βπ΄ββ© β (Word π β {β })) |
8 | s1fv 14564 | . . 3 β’ (π΄ β π· β (β¨βπ΄ββ©β0) = π΄) | |
9 | id 22 | . . 3 β’ (π΄ β π· β π΄ β π·) | |
10 | 8, 9 | eqeltrd 2833 | . 2 β’ (π΄ β π· β (β¨βπ΄ββ©β0) β π·) |
11 | s1len 14560 | . . . . . 6 β’ (β―ββ¨βπ΄ββ©) = 1 | |
12 | 11 | a1i 11 | . . . . 5 β’ (π΄ β π· β (β―ββ¨βπ΄ββ©) = 1) |
13 | 12 | oveq2d 7427 | . . . 4 β’ (π΄ β π· β (1..^(β―ββ¨βπ΄ββ©)) = (1..^1)) |
14 | fzo0 13660 | . . . 4 β’ (1..^1) = β | |
15 | 13, 14 | eqtrdi 2788 | . . 3 β’ (π΄ β π· β (1..^(β―ββ¨βπ΄ββ©)) = β ) |
16 | rzal 4508 | . . 3 β’ ((1..^(β―ββ¨βπ΄ββ©)) = β β βπ β (1..^(β―ββ¨βπ΄ββ©))(β¨βπ΄ββ©βπ) β ran (πβ(β¨βπ΄ββ©β(π β 1)))) | |
17 | 15, 16 | syl 17 | . 2 β’ (π΄ β π· β βπ β (1..^(β―ββ¨βπ΄ββ©))(β¨βπ΄ββ©βπ) β ran (πβ(β¨βπ΄ββ©β(π β 1)))) |
18 | efgval.w | . . 3 β’ π = ( I βWord (πΌ Γ 2o)) | |
19 | efgval.r | . . 3 β’ βΌ = ( ~FG βπΌ) | |
20 | efgval2.m | . . 3 β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) | |
21 | efgval2.t | . . 3 β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) | |
22 | efgred.s | . . 3 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) | |
23 | 18, 19, 20, 21, 2, 22 | efgsdm 19639 | . 2 β’ (β¨βπ΄ββ© β dom π β (β¨βπ΄ββ© β (Word π β {β }) β§ (β¨βπ΄ββ©β0) β π· β§ βπ β (1..^(β―ββ¨βπ΄ββ©))(β¨βπ΄ββ©βπ) β ran (πβ(β¨βπ΄ββ©β(π β 1))))) |
24 | 7, 10, 17, 23 | syl3anbrc 1343 | 1 β’ (π΄ β π· β β¨βπ΄ββ© β dom π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 {crab 3432 β cdif 3945 β c0 4322 {csn 4628 β¨cop 4634 β¨cotp 4636 βͺ ciun 4997 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 dom cdm 5676 ran crn 5677 βcfv 6543 (class class class)co 7411 β cmpo 7413 1oc1o 8461 2oc2o 8462 0cc0 11112 1c1 11113 β cmin 11448 ...cfz 13488 ..^cfzo 13631 β―chash 14294 Word cword 14468 β¨βcs1 14549 splice csplice 14703 β¨βcs2 14796 ~FG cefg 19615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-s1 14550 |
This theorem is referenced by: efgsfo 19648 |
Copyright terms: Public domain | W3C validator |