MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1 Structured version   Visualization version   GIF version

Theorem efgs1 19665
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4094 . . . . 5 (𝐴 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → 𝐴𝑊)
2 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2846 . . . 4 (𝐴𝐷𝐴𝑊)
43s1cld 14568 . . 3 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ Word 𝑊)
5 s1nz 14572 . . 3 ⟨“𝐴”⟩ ≠ ∅
6 eldifsn 4750 . . 3 (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ↔ (⟨“𝐴”⟩ ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ≠ ∅))
74, 5, 6sylanblrc 590 . 2 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}))
8 s1fv 14575 . . 3 (𝐴𝐷 → (⟨“𝐴”⟩‘0) = 𝐴)
9 id 22 . . 3 (𝐴𝐷𝐴𝐷)
108, 9eqeltrd 2828 . 2 (𝐴𝐷 → (⟨“𝐴”⟩‘0) ∈ 𝐷)
11 s1len 14571 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
1211a1i 11 . . . . 5 (𝐴𝐷 → (♯‘⟨“𝐴”⟩) = 1)
1312oveq2d 7403 . . . 4 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = (1..^1))
14 fzo0 13644 . . . 4 (1..^1) = ∅
1513, 14eqtrdi 2780 . . 3 (𝐴𝐷 → (1..^(♯‘⟨“𝐴”⟩)) = ∅)
16 rzal 4472 . . 3 ((1..^(♯‘⟨“𝐴”⟩)) = ∅ → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
1715, 16syl 17 . 2 (𝐴𝐷 → ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
18 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
19 efgval.r . . 3 = ( ~FG𝐼)
20 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
21 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
22 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
2318, 19, 20, 21, 2, 22efgsdm 19660 . 2 (⟨“𝐴”⟩ ∈ dom 𝑆 ↔ (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ∧ (⟨“𝐴”⟩‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1)))))
247, 10, 17, 23syl3anbrc 1344 1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  c0 4296  {csn 4589  cop 4595  cotp 4597   ciun 4955  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  0cc0 11068  1c1 11069  cmin 11405  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs1 14560   splice csplice 14714  ⟨“cs2 14807   ~FG cefg 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-s1 14561
This theorem is referenced by:  efgsfo  19669
  Copyright terms: Public domain W3C validator