| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgs1 | Structured version Visualization version GIF version | ||
| Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgs1 | ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4131 | . . . . 5 ⊢ (𝐴 ∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 𝐴 ∈ 𝑊) | |
| 2 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 3 | 1, 2 | eleq2s 2859 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝑊) |
| 4 | 3 | s1cld 14641 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ Word 𝑊) |
| 5 | s1nz 14645 | . . 3 ⊢ 〈“𝐴”〉 ≠ ∅ | |
| 6 | eldifsn 4786 | . . 3 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ (〈“𝐴”〉 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ≠ ∅)) | |
| 7 | 4, 5, 6 | sylanblrc 590 | . 2 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅})) |
| 8 | s1fv 14648 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) = 𝐴) | |
| 9 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
| 10 | 8, 9 | eqeltrd 2841 | . 2 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) ∈ 𝐷) |
| 11 | s1len 14644 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (♯‘〈“𝐴”〉) = 1) |
| 13 | 12 | oveq2d 7447 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = (1..^1)) |
| 14 | fzo0 13723 | . . . 4 ⊢ (1..^1) = ∅ | |
| 15 | 13, 14 | eqtrdi 2793 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (1..^(♯‘〈“𝐴”〉)) = ∅) |
| 16 | rzal 4509 | . . 3 ⊢ ((1..^(♯‘〈“𝐴”〉)) = ∅ → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝐷 → ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) |
| 18 | efgval.w | . . 3 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 19 | efgval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 20 | efgval2.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 21 | efgval2.t | . . 3 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 22 | efgred.s | . . 3 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 23 | 18, 19, 20, 21, 2, 22 | efgsdm 19748 | . 2 ⊢ (〈“𝐴”〉 ∈ dom 𝑆 ↔ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ∧ (〈“𝐴”〉‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1))))) |
| 24 | 7, 10, 17, 23 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∅c0 4333 {csn 4626 〈cop 4632 〈cotp 4634 ∪ ciun 4991 ↦ cmpt 5225 I cid 5577 × cxp 5683 dom cdm 5685 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8499 2oc2o 8500 0cc0 11155 1c1 11156 − cmin 11492 ...cfz 13547 ..^cfzo 13694 ♯chash 14369 Word cword 14552 〈“cs1 14633 splice csplice 14787 〈“cs2 14880 ~FG cefg 19724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-s1 14634 |
| This theorem is referenced by: efgsfo 19757 |
| Copyright terms: Public domain | W3C validator |