Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | s1eq 14305 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈“cs1 14300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-s1 14301 |
This theorem is referenced by: s1prc 14309 ccat1st1st 14335 swrds1 14379 swrdlsw 14380 reuccatpfxs1lem 14459 s2eqd 14576 s3eqd 14577 s4eqd 14578 s5eqd 14579 s6eqd 14580 s7eqd 14581 s8eqd 14582 frmdgsum 18501 psgnunilem5 19102 efgredlemc 19351 vrgpval 19373 vrgpinv 19375 frgpup2 19382 frgpup3lem 19383 pfx1s2 31213 pfxlsw2ccat 31224 iwrdsplit 32354 sseqval 32355 sseqf 32359 sseqp1 32362 signsvtn0 32549 signstfveq0 32556 mrsubcv 33472 |
Copyright terms: Public domain | W3C validator |