MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eqd Structured version   Visualization version   GIF version

Theorem s1eqd 14617
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1eqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
s1eqd (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eqd
StepHypRef Expression
1 s1eqd.1 . 2 (𝜑𝐴 = 𝐵)
2 s1eq 14616 . 2 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ⟨“cs1 14611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-s1 14612
This theorem is referenced by:  s1prc  14620  ccat1st1st  14644  swrds1  14682  swrdlsw  14683  reuccatpfxs1lem  14762  s2eqd  14880  s3eqd  14881  s4eqd  14882  s5eqd  14883  s6eqd  14884  s7eqd  14885  s8eqd  14886  frmdgsum  18838  psgnunilem5  19473  efgredlemc  19724  vrgpval  19746  vrgpinv  19748  frgpup2  19755  frgpup3lem  19756  pfx1s2  32860  pfxlsw2ccat  32872  ccatws1f1olast  32874  wrdpmtrlast  33050  1arithidomlem2  33497  iwrdsplit  34365  sseqval  34366  sseqf  34370  sseqp1  34373  signsvtn0  34548  signstfveq0  34555  mrsubcv  35478
  Copyright terms: Public domain W3C validator