| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14518 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈“cs1 14513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-s1 14514 |
| This theorem is referenced by: s1prc 14522 ccat1st1st 14546 swrds1 14584 swrdlsw 14585 reuccatpfxs1lem 14663 s2eqd 14780 s3eqd 14781 s4eqd 14782 s5eqd 14783 s6eqd 14784 s7eqd 14785 s8eqd 14786 frmdgsum 18780 psgnunilem5 19416 efgredlemc 19667 vrgpval 19689 vrgpinv 19691 frgpup2 19698 frgpup3lem 19699 pfx1s2 32931 pfxlsw2ccat 32942 ccatws1f1olast 32944 wrdpmtrlast 33073 1arithidomlem2 33512 iwrdsplit 34411 sseqval 34412 sseqf 34416 sseqp1 34419 signsvtn0 34594 signstfveq0 34601 mrsubcv 35565 |
| Copyright terms: Public domain | W3C validator |