Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | s1eq 14412 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 〈“cs1 14407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-iota 6440 df-fv 6496 df-s1 14408 |
This theorem is referenced by: s1prc 14416 ccat1st1st 14440 swrds1 14482 swrdlsw 14483 reuccatpfxs1lem 14562 s2eqd 14680 s3eqd 14681 s4eqd 14682 s5eqd 14683 s6eqd 14684 s7eqd 14685 s8eqd 14686 frmdgsum 18602 psgnunilem5 19203 efgredlemc 19451 vrgpval 19473 vrgpinv 19475 frgpup2 19482 frgpup3lem 19483 pfx1s2 31564 pfxlsw2ccat 31575 iwrdsplit 32718 sseqval 32719 sseqf 32723 sseqp1 32726 signsvtn0 32913 signstfveq0 32920 mrsubcv 33835 |
Copyright terms: Public domain | W3C validator |