| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14616 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs1 14611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-s1 14612 |
| This theorem is referenced by: s1prc 14620 ccat1st1st 14644 swrds1 14682 swrdlsw 14683 reuccatpfxs1lem 14762 s2eqd 14880 s3eqd 14881 s4eqd 14882 s5eqd 14883 s6eqd 14884 s7eqd 14885 s8eqd 14886 frmdgsum 18838 psgnunilem5 19473 efgredlemc 19724 vrgpval 19746 vrgpinv 19748 frgpup2 19755 frgpup3lem 19756 pfx1s2 32860 pfxlsw2ccat 32872 ccatws1f1olast 32874 wrdpmtrlast 33050 1arithidomlem2 33497 iwrdsplit 34365 sseqval 34366 sseqf 34370 sseqp1 34373 signsvtn0 34548 signstfveq0 34555 mrsubcv 35478 |
| Copyright terms: Public domain | W3C validator |