![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | s1eq 14648 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-s1 14644 |
This theorem is referenced by: s1prc 14652 ccat1st1st 14676 swrds1 14714 swrdlsw 14715 reuccatpfxs1lem 14794 s2eqd 14912 s3eqd 14913 s4eqd 14914 s5eqd 14915 s6eqd 14916 s7eqd 14917 s8eqd 14918 frmdgsum 18897 psgnunilem5 19536 efgredlemc 19787 vrgpval 19809 vrgpinv 19811 frgpup2 19818 frgpup3lem 19819 pfx1s2 32905 pfxlsw2ccat 32917 ccatws1f1olast 32919 wrdpmtrlast 33086 1arithidomlem2 33529 iwrdsplit 34352 sseqval 34353 sseqf 34357 sseqp1 34360 signsvtn0 34547 signstfveq0 34554 mrsubcv 35478 |
Copyright terms: Public domain | W3C validator |