| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14565 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-s1 14561 |
| This theorem is referenced by: s1prc 14569 ccat1st1st 14593 swrds1 14631 swrdlsw 14632 reuccatpfxs1lem 14711 s2eqd 14829 s3eqd 14830 s4eqd 14831 s5eqd 14832 s6eqd 14833 s7eqd 14834 s8eqd 14835 frmdgsum 18789 psgnunilem5 19424 efgredlemc 19675 vrgpval 19697 vrgpinv 19699 frgpup2 19706 frgpup3lem 19707 pfx1s2 32860 pfxlsw2ccat 32872 ccatws1f1olast 32874 wrdpmtrlast 33050 1arithidomlem2 33507 iwrdsplit 34378 sseqval 34379 sseqf 34383 sseqp1 34386 signsvtn0 34561 signstfveq0 34568 mrsubcv 35497 |
| Copyright terms: Public domain | W3C validator |