| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14525 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-s1 14521 |
| This theorem is referenced by: s1prc 14529 ccat1st1st 14553 swrds1 14591 swrdlsw 14592 reuccatpfxs1lem 14670 s2eqd 14788 s3eqd 14789 s4eqd 14790 s5eqd 14791 s6eqd 14792 s7eqd 14793 s8eqd 14794 frmdgsum 18754 psgnunilem5 19391 efgredlemc 19642 vrgpval 19664 vrgpinv 19666 frgpup2 19673 frgpup3lem 19674 pfx1s2 32893 pfxlsw2ccat 32905 ccatws1f1olast 32907 wrdpmtrlast 33048 1arithidomlem2 33483 iwrdsplit 34354 sseqval 34355 sseqf 34359 sseqp1 34362 signsvtn0 34537 signstfveq0 34544 mrsubcv 35482 |
| Copyright terms: Public domain | W3C validator |