| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14500 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈“cs1 14495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-s1 14496 |
| This theorem is referenced by: s1prc 14504 ccat1st1st 14528 swrds1 14566 swrdlsw 14567 reuccatpfxs1lem 14645 s2eqd 14762 s3eqd 14763 s4eqd 14764 s5eqd 14765 s6eqd 14766 s7eqd 14767 s8eqd 14768 frmdgsum 18762 psgnunilem5 19399 efgredlemc 19650 vrgpval 19672 vrgpinv 19674 frgpup2 19681 frgpup3lem 19682 pfx1s2 32910 pfxlsw2ccat 32921 ccatws1f1olast 32923 wrdpmtrlast 33052 1arithidomlem2 33491 iwrdsplit 34390 sseqval 34391 sseqf 34395 sseqp1 34398 signsvtn0 34573 signstfveq0 34580 mrsubcv 35522 |
| Copyright terms: Public domain | W3C validator |