| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14572 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-s1 14568 |
| This theorem is referenced by: s1prc 14576 ccat1st1st 14600 swrds1 14638 swrdlsw 14639 reuccatpfxs1lem 14718 s2eqd 14836 s3eqd 14837 s4eqd 14838 s5eqd 14839 s6eqd 14840 s7eqd 14841 s8eqd 14842 frmdgsum 18796 psgnunilem5 19431 efgredlemc 19682 vrgpval 19704 vrgpinv 19706 frgpup2 19713 frgpup3lem 19714 pfx1s2 32867 pfxlsw2ccat 32879 ccatws1f1olast 32881 wrdpmtrlast 33057 1arithidomlem2 33514 iwrdsplit 34385 sseqval 34386 sseqf 34390 sseqp1 34393 signsvtn0 34568 signstfveq0 34575 mrsubcv 35504 |
| Copyright terms: Public domain | W3C validator |