Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | s1eq 14233 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-s1 14229 |
This theorem is referenced by: s1prc 14237 ccat1st1st 14263 swrds1 14307 swrdlsw 14308 reuccatpfxs1lem 14387 s2eqd 14504 s3eqd 14505 s4eqd 14506 s5eqd 14507 s6eqd 14508 s7eqd 14509 s8eqd 14510 frmdgsum 18416 psgnunilem5 19017 efgredlemc 19266 vrgpval 19288 vrgpinv 19290 frgpup2 19297 frgpup3lem 19298 pfx1s2 31115 pfxlsw2ccat 31126 iwrdsplit 32254 sseqval 32255 sseqf 32259 sseqp1 32262 signsvtn0 32449 signstfveq0 32456 mrsubcv 33372 |
Copyright terms: Public domain | W3C validator |