MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eqd Structured version   Visualization version   GIF version

Theorem s1eqd 14619
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1eqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
s1eqd (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eqd
StepHypRef Expression
1 s1eqd.1 . 2 (𝜑𝐴 = 𝐵)
2 s1eq 14618 . 2 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ⟨“cs1 14613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-s1 14614
This theorem is referenced by:  s1prc  14622  ccat1st1st  14646  swrds1  14684  swrdlsw  14685  reuccatpfxs1lem  14764  s2eqd  14882  s3eqd  14883  s4eqd  14884  s5eqd  14885  s6eqd  14886  s7eqd  14887  s8eqd  14888  frmdgsum  18840  psgnunilem5  19475  efgredlemc  19726  vrgpval  19748  vrgpinv  19750  frgpup2  19757  frgpup3lem  19758  pfx1s2  32914  pfxlsw2ccat  32926  ccatws1f1olast  32928  wrdpmtrlast  33104  1arithidomlem2  33551  iwrdsplit  34419  sseqval  34420  sseqf  34424  sseqp1  34427  signsvtn0  34602  signstfveq0  34609  mrsubcv  35532
  Copyright terms: Public domain W3C validator