| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| s1eqd | ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | s1eq 14618 | . 2 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs1 14613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-s1 14614 |
| This theorem is referenced by: s1prc 14622 ccat1st1st 14646 swrds1 14684 swrdlsw 14685 reuccatpfxs1lem 14764 s2eqd 14882 s3eqd 14883 s4eqd 14884 s5eqd 14885 s6eqd 14886 s7eqd 14887 s8eqd 14888 frmdgsum 18840 psgnunilem5 19475 efgredlemc 19726 vrgpval 19748 vrgpinv 19750 frgpup2 19757 frgpup3lem 19758 pfx1s2 32914 pfxlsw2ccat 32926 ccatws1f1olast 32928 wrdpmtrlast 33104 1arithidomlem2 33551 iwrdsplit 34419 sseqval 34420 sseqf 34424 sseqp1 34427 signsvtn0 34602 signstfveq0 34609 mrsubcv 35532 |
| Copyright terms: Public domain | W3C validator |