| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen | Structured version Visualization version GIF version | ||
| Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| unisalgen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| unisalgen.s | ⊢ 𝑆 = (SalGen‘𝑋) |
| unisalgen.u | ⊢ 𝑈 = ∪ 𝑋 |
| Ref | Expression |
|---|---|
| unisalgen | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | unisalgen.s | . . . 4 ⊢ 𝑆 = (SalGen‘𝑋) | |
| 3 | unisalgen.u | . . . 4 ⊢ 𝑈 = ∪ 𝑋 | |
| 4 | 1, 2, 3 | salgenuni 46445 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = 𝑈) |
| 5 | 4 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝑈 = ∪ 𝑆) |
| 6 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 = (SalGen‘𝑋)) |
| 7 | salgencl 46440 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
| 9 | 6, 8 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 10 | saluni 46433 | . . 3 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| 12 | 5, 11 | eqeltrd 2831 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ‘cfv 6481 SAlgcsalg 46416 SalGencsalgen 46420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-salg 46417 df-salgen 46421 |
| This theorem is referenced by: salgensscntex 46452 |
| Copyright terms: Public domain | W3C validator |