Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen Structured version   Visualization version   GIF version

Theorem unisalgen 46336
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
unisalgen.x (𝜑𝑋𝑉)
unisalgen.s 𝑆 = (SalGen‘𝑋)
unisalgen.u 𝑈 = 𝑋
Assertion
Ref Expression
unisalgen (𝜑𝑈𝑆)

Proof of Theorem unisalgen
StepHypRef Expression
1 unisalgen.x . . . 4 (𝜑𝑋𝑉)
2 unisalgen.s . . . 4 𝑆 = (SalGen‘𝑋)
3 unisalgen.u . . . 4 𝑈 = 𝑋
41, 2, 3salgenuni 46333 . . 3 (𝜑 𝑆 = 𝑈)
54eqcomd 2742 . 2 (𝜑𝑈 = 𝑆)
62a1i 11 . . . 4 (𝜑𝑆 = (SalGen‘𝑋))
7 salgencl 46328 . . . . 5 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
81, 7syl 17 . . . 4 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
96, 8eqeltrd 2835 . . 3 (𝜑𝑆 ∈ SAlg)
10 saluni 46321 . . 3 (𝑆 ∈ SAlg → 𝑆𝑆)
119, 10syl 17 . 2 (𝜑 𝑆𝑆)
125, 11eqeltrd 2835 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4888  cfv 6536  SAlgcsalg 46304  SalGencsalgen 46308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-salg 46305  df-salgen 46309
This theorem is referenced by:  salgensscntex  46340
  Copyright terms: Public domain W3C validator