![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen | Structured version Visualization version GIF version |
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
unisalgen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
unisalgen.s | ⊢ 𝑆 = (SalGen‘𝑋) |
unisalgen.u | ⊢ 𝑈 = ∪ 𝑋 |
Ref | Expression |
---|---|
unisalgen | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | unisalgen.s | . . . 4 ⊢ 𝑆 = (SalGen‘𝑋) | |
3 | unisalgen.u | . . . 4 ⊢ 𝑈 = ∪ 𝑋 | |
4 | 1, 2, 3 | salgenuni 41286 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = 𝑈) |
5 | 4 | eqcomd 2803 | . 2 ⊢ (𝜑 → 𝑈 = ∪ 𝑆) |
6 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 = (SalGen‘𝑋)) |
7 | salgencl 41281 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
9 | 6, 8 | eqeltrd 2876 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
10 | saluni 41275 | . . 3 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
12 | 5, 11 | eqeltrd 2876 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ∪ cuni 4626 ‘cfv 6099 SAlgcsalg 41259 SalGencsalgen 41263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-int 4666 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-iota 6062 df-fun 6101 df-fv 6107 df-salg 41260 df-salgen 41264 |
This theorem is referenced by: salgensscntex 41293 |
Copyright terms: Public domain | W3C validator |