| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen | Structured version Visualization version GIF version | ||
| Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| unisalgen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| unisalgen.s | ⊢ 𝑆 = (SalGen‘𝑋) |
| unisalgen.u | ⊢ 𝑈 = ∪ 𝑋 |
| Ref | Expression |
|---|---|
| unisalgen | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | unisalgen.s | . . . 4 ⊢ 𝑆 = (SalGen‘𝑋) | |
| 3 | unisalgen.u | . . . 4 ⊢ 𝑈 = ∪ 𝑋 | |
| 4 | 1, 2, 3 | salgenuni 46333 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = 𝑈) |
| 5 | 4 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝑈 = ∪ 𝑆) |
| 6 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 = (SalGen‘𝑋)) |
| 7 | salgencl 46328 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
| 9 | 6, 8 | eqeltrd 2835 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 10 | saluni 46321 | . . 3 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| 12 | 5, 11 | eqeltrd 2835 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 ‘cfv 6536 SAlgcsalg 46304 SalGencsalgen 46308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-salg 46305 df-salgen 46309 |
| This theorem is referenced by: salgensscntex 46340 |
| Copyright terms: Public domain | W3C validator |