Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen | Structured version Visualization version GIF version |
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
unisalgen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
unisalgen.s | ⊢ 𝑆 = (SalGen‘𝑋) |
unisalgen.u | ⊢ 𝑈 = ∪ 𝑋 |
Ref | Expression |
---|---|
unisalgen | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | unisalgen.s | . . . 4 ⊢ 𝑆 = (SalGen‘𝑋) | |
3 | unisalgen.u | . . . 4 ⊢ 𝑈 = ∪ 𝑋 | |
4 | 1, 2, 3 | salgenuni 43766 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = 𝑈) |
5 | 4 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝑈 = ∪ 𝑆) |
6 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 = (SalGen‘𝑋)) |
7 | salgencl 43761 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
9 | 6, 8 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
10 | saluni 43755 | . . 3 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
12 | 5, 11 | eqeltrd 2839 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 SAlgcsalg 43739 SalGencsalgen 43743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-salg 43740 df-salgen 43744 |
This theorem is referenced by: salgensscntex 43773 |
Copyright terms: Public domain | W3C validator |