Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen Structured version   Visualization version   GIF version

Theorem unisalgen 46345
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
unisalgen.x (𝜑𝑋𝑉)
unisalgen.s 𝑆 = (SalGen‘𝑋)
unisalgen.u 𝑈 = 𝑋
Assertion
Ref Expression
unisalgen (𝜑𝑈𝑆)

Proof of Theorem unisalgen
StepHypRef Expression
1 unisalgen.x . . . 4 (𝜑𝑋𝑉)
2 unisalgen.s . . . 4 𝑆 = (SalGen‘𝑋)
3 unisalgen.u . . . 4 𝑈 = 𝑋
41, 2, 3salgenuni 46342 . . 3 (𝜑 𝑆 = 𝑈)
54eqcomd 2736 . 2 (𝜑𝑈 = 𝑆)
62a1i 11 . . . 4 (𝜑𝑆 = (SalGen‘𝑋))
7 salgencl 46337 . . . . 5 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
81, 7syl 17 . . . 4 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
96, 8eqeltrd 2829 . . 3 (𝜑𝑆 ∈ SAlg)
10 saluni 46330 . . 3 (𝑆 ∈ SAlg → 𝑆𝑆)
119, 10syl 17 . 2 (𝜑 𝑆𝑆)
125, 11eqeltrd 2829 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4874  cfv 6514  SAlgcsalg 46313  SalGencsalgen 46317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-salg 46314  df-salgen 46318
This theorem is referenced by:  salgensscntex  46349
  Copyright terms: Public domain W3C validator